1. Azemsha, S. A Method for Assessing the Automobilization Impact on Population Morbidity / S. Azemsha, D. Kapski, P. Pegin // Transportation Research Procedia. 2018. Vol. 36. P. 18-24. https://doi.org/10.1016/j.trpro.2018.12.037.
2. Influence of Ambient Temperature on the CO2 Emitted with Exhaust Gases of Gasoline Vehicles / D. Chainikov [et al.] // IOP Conference Series: Materials Science and Engineering. 2016. Vol. 142. P. 012109. https://doi.org/10.1088/1757-899X/142/1/012109.
3. Chikishev, E. Assessment of External Factors Influence on the Fuel Consumption of a Diesel Bus Operating on a City Route / E. Chikishev, D. Chainikov // Transportation Research Procedia. 2020. Vol. 61. P. 354-360. https://doi.org/10.1016/j.trpro.2022.01.057.
4. Giraldo, M. Real Emissions, Driving Patterns and Fuel Consumption of In-use Diesel Buses Operating at High Altitude / M. Giraldo, J. I. Huertas // Transportation Research Part D: Transport and Environment. 2019. Vol. 77. P. 21-36. https://doi.org/10.1016/j.trd.2019.10.004.
5. Comparison of Real Driving Emissions from Euro VI Buses with Diesel and Compressed Natural Gas Fuels / A. Gómez [et al.] // Fuel. 2019. Vol. 2891. P. 119836. https://doi.org/10.1016/j.fuel.2020.119836.
6. Optimal Location of Charging Stations for Electric Vehicles in a Neighborhood in Lisbon, Portugal / I. Frade [et al.]. Transportation Research Record. 2011. Vol. 2252. P. 91-98. https://doi.org/10.3141/2252-12.
7. Ivanov, A. Level Recession of Emissions Release by Motor-and-Tractor Diesel Engines Through the Application of Water-fuel Emulsions / A. Ivanov, E. Chikishev // IOP Conference Series: Earth and Environmental Science. 2017. Vol. 50. P. 012005. https://doi.org/10.1088/1755-1315/50/1/012005.
8. Анализ развития различных видов городского электрического транспорта в Полоцке и Новополоцке / Д. В. Капский [и др.] // Наука и техника. 2022. Т. 21. № 2. С. 150-157. https://doi.org/10.21122/2227-1031-2022-21-2-150-157.
9. Hnatov, A. Energy Saving Technologies for Urban Bus Transport / A. Hnatov, S. Arhun, S. Ponikarovska // International Journal of Automotive and Mechanical Engineering. 2017. Vol. 14, Nо 4. P. 4649-4664. https://doi.org/10.15282/ijame.14.4.2017.5.0366.
10. Kuharonak, G. M. Ensuring Requirements for Emissions of Harmful Substances of Diesel Engines / G. M. Kuharonak, D. V. Kapskiy, V. I. Berezun // Наука и техника. 2020. T. 19, № 4. C. 305-310. https://doi.org/10.21122/2227-1031-2020-19-4-305-310.
11. Comparative Analysis of Cost, Emissions and Fuel Consumption of Diesel, Natural Gas, Electric and Hydrogen Urban Buses / P. Muñoz [et al.] // Energy Conversion and Management. 2022. Vol. 2571. P. 115412. https://doi.org/10.1016/j.enconman.2022.115412.
12. Real-World Fuel Consumption, Fuel Cost and Exhaust Emissions of Different Bus Powertrain Technologies / S. R. Oprešnik [et al.] // Energies. 2018. Vol. 11, Nо 8. P. 2160. https://doi.org/10.3390/en11082160.
13. Özener, O. Fuel Consumption and Emission Evaluation of a Rapid Bus Transport System at Different Operating Conditions / O. Özener, M. Özkan // Fuel. 2020. Vol. 265. P. 117016. https://doi.org/10.1016/j.fuel.2020.117016.
14. Effects of Passenger Load, Road Grade, and Congestion Level on Real-World Fuel Consumption and Emissions from Compressed Natural Gas and Diesel Urban Buses / F. Rosero [et al.] // Applied Energy. 2021. Vol. 282. P. 116195. https://doi.org/10.1016/j.apenergy.2020.116195.
15. Estimation of Bus Emission Models for Different Fuel Types of Buses under Real Conditions / C. Wang [et al.] // Science of the Total Environment. 2018. Vol. 640-641. P. 965-972. https://doi.org/10.1016/j.scitotenv.2018.05.289.
16. Low-Carbon Oriented Optimal Energy Dispatch in Coupled Natural Gas and Electricity Systems / Y. Wang [et al.] // Applied Energy. 2020. Vol. 280. P. 115948. https://doi.org/10.1016/j.apenergy.2020.115948
17. Real-Road Driving and Fuel Consumption Characteristics of Public Buses in Southern China / H. Yu [et al.] // International Journal of Automotive Technology. 2020. Vol. 21, Nо 1. P. 33-40. https://doi.org/10.1007/s12239-020-0004-0.
18. Electric Vehicles [Electronic Resource]. Mode of access: https://www.iea.org/reports/electric-vehicles. Date of access: 25.06.2022.
19. Chikishev, E. Impact of Natural and Climatic Conditions on Electric Energy Consumption by an Electric City Bus / E. Chikishev // Transportation Research Procedia. 2021. Vol. 57. P. 113-121. https://doi.org/10.1016/j.trpro.2021.09.032.
20. Gorbunova, A. Studying the Formation of the Charging Session Number at Public Charging Stations for Electric Vehicles / A. Gorbunova, I. Anisimov, E. Magaril // Sustainability (Switzerland). 2020. Vol. 12, Nо 14. P. 5571. https://doi.org/10.3390/su12145571.
21. Bezruchonak, A. Geographic Features of Zero-Emissions Urban Mobility: the Case of Electric Buses in Europe and Belarus / A. Bezruchonak // European Spatial Research and Policy. 2019. Vol. 26, Nо 1. P. 81-99. https://doi.org/10.18778/1231-1952.26.1.05.
22. Brdulak, A. Development Forecasts for the Zero-Emission Bus Fleet in Servicing Public Transport in Chosen EU Member Countries / A. Brdulak, G. Chaberek, J. Jagodzin- ski // Energies. 2020. Vol. 13, Nо 6. P. 4239. https://doi.org/10.3390/en13164239.
23. Modeling and Experimental Investigation of Thermal Comfort and Energy Consumption in a Battery Electric Bus / F. Cigarini [et al. ] // World Electric Vehicle Journal. 2021. Vol. 12, Nо 1. Art. No 7. https://doi.org/10.3390/wevj12010007.
24. Fadyushin, A. Influence of the Parameters of the Bus Lane and the Bus Stop on the Delays of Private and Public Transport / A. Fadyushin, D. Zakharov // Sustainability (Switzerland). 2020. Vol. 12, Nо 22. Art. No 9593. https://doi.org/10.3390/su12229593.
25. He S. Y., Kuo Y.-H., Wu D. (2016) Incorporating Institutional and Spatial Factors in the Selection of the Optimal Locations of Public Electric Vehicle Charging Facilities: A Case Study of Beijing, China / S. Y. He, Y.-H. Kuo, D. Wu. Transportation Research Part C: Emerging Technologies. 2016. Vol. 67. P. 131-148. https://doi.org/10.1016/j.trc.2016.02.003.
26. Active Cell Balancing for Life Cycle Extension of Lithium-Ion Batteries under Thermal Gradient / P. Kremer [et al.] // Proceedings of the International Symposium on Low Power Electronics and Design, 2021-July. 2021. P. 9502500. https://doi.org/10.1109/ISLPED52811.2021.9502500.
27. Todoruț, A. Replacing Diesel Buses with Electric Buses for Sustainable Public Transportation and Reduction of CO2 Emissions / A. Todoruț, N. Cordoș, C. Iclodean // Polish Journal of Environmental Studies. 2020. Vol. 29, Nо 5. P. 3339-3351. https://doi.org/10.15244/pjoes/112899.
28. Sathaye, N. An Approach for the Optimal Planning of Electric Vehicle Infrastructure for Highway Corridors / N. Sathaye, S. Kelley // Transportation Research Part E: Logistics and Transportation Review. 2013. Vol. 59. P. 15-33. https://doi.org/10.1016/j.tre.2013.08.003.
29. Optimizing the Spatio-Temporal Deployment of Battery Electric Bus System / R. Wei [et al.] // Journal of Transport Geography. 2018. Vol. 68. P. 160-168. https://doi.org/10.1016/j.jtrangeo.2018.03.013.
30. Assessment of Adaptability of Natural Gas Vehicles by the Constructive Analogy Method / I. Anisimov [et al.] // International Journal of Sustainable Development and Planning. 2017. Vol. 12, Nо 6. P. 1006-1017. https://doi.org/10.2495/SDP-V12-N6-1006-1017.
31. Petrov, A. Electric Bus in Tyumen: The Chase for Trends and Problems of Exploitation / A. Petrov, D. Petrova // E3S Web of Conferences. 2019. Vol. 110. P. 01014. https://doi.org/10.1051/e3sconf/201911001014.
32. Бодня, О. Все электробусы, которые есть в России: от серийных до опытных [Электронный ресурс] / О. Бодня // 5 колесо. 2022. Режим доступа: https://5koleso.ru/avtopark/avtobusy/opyty-s-elektrichestvom. Дата доступа: 15.06.2022.