STOCHASTIC STABILITY OF NONLINEAR FLUCTUATIONS IN VISCOELASTIC BODIES
Abstract
The paper considers a wave dynamics of a viscoelastic body (Kelvin – Voight model) which is described by a system of nonlinear differential equations in partial derivatives. Transition from a system of partial derivatives to an ordinary differential equations system for the coordinate functions is executed with the purpose to study the system behavior over time using the Bubnov – Galerkin method.
A solution for one-dimensional case is obtained, which for negligible viscosity is reduced to the Duffing equation describing behavior of a nonlinear elastic rod in time at external actions. The paper shows that if an external influence is a deterministic periodic pulse process then oscillations starting from some time under certain conditions are transited into regime of deterministic chaos. In this case the stability can be investigated by criteria of probabilistic character. The paper considers stability of a nonlinear dynamical system in chaotic regime based on the mean-square criteria.
About the Authors
A. V. ChigarevBelarus
Yu. V. Chigarev
Belarus
S. A. Pronkevich
Belarus
References
1. Гузь, А. Н. Устойчивость упругих тел при конечных деформациях / А. Н. Гузь. – Киев : Наук. думка, 1973. – 272 с.
2. Заславский, Г. М. Статистическая необратимость в нелинейных системах / Г. М. Заславский. – М. : Наука, 1970. – 144 с.
3. Zaslavski, G. M. Hamiltonian Chaos and Fractional Dynamics / G. M. Zaslavski // Oxford: Oxsford University Press, 2005 ISBN 0198526040.
4. Чигарев, А. В. Стохастическая неустойчивость лучей в неоднородных средах / А. В. Чигарев, Ю. В. Чигарев // Акустический журнал. – 1978. – Т. 24. – 765 с.
5. Хасьминский, Р. З. Устойчивость систем дифференциальных уравнений при случайных возмущениях их параметров / Р. З. Хасьминский. – М. : Наука, 1969. – 368 с.
Review
For citations:
Chigarev A.V., Chigarev Yu.V., Pronkevich S.A. STOCHASTIC STABILITY OF NONLINEAR FLUCTUATIONS IN VISCOELASTIC BODIES. Science & Technique. 2012;(3):51-55. (In Russ.)