1. Soliman A., Kaldas M. (2021) Semi-Active Suspension Systems From Research to Mass-Market - a Review. Journal of Low Frequency Noise, Vibration and Active Control, 40 (2), 1005-1023. https://doi.org/10.1177/1461348419876392.
2. Riduan A.F.M., Tamaldin N., Sudrajat A., Ahmad F. (2018) Review on Active Suspension System. SHS Web of Conferences, 49, 02008. https://doi.org/10.1051/shsconf/20184902008.
3. Karnopp D., Margolis D. (1984) Adaptive Suspension Concepts for Road Vehicles. Vehicle System Dynamics, 13 (3), 45-160. https://doi.org/10.1080/00423118408968772.
4. Mikhailau V. V., Snitkov A. G., Liahov S. V. (2016) Improvement of Bus Operational Characteristics While Using Integrated Control of Suspension and Transmission. Nauka i Tehnika = Science & Technique,15 (1), 37-45. https://doi.org/10.21122/2227-1031-2016-15-1-37-45 (in Russian).
5. Kumar M. S., Vijayarangan S. (2007) Analytical and Experimental Studies on Active Suspension System of Light Passenger Vehicle to Improve Ride Comfort. Mechanic, 65 (3), 34-41.
6. Lin B., Su X., Li X. (2019) Fuzzy Sliding Mode Control for Active Suspension System with Proportional Differential Sliding Mode Observer. Asian Journal of Control, 21 (1), 264-276. https://doi.org/10.1002/asjc.1882.
7. Chen S. A., Wang J. C., Yao M., Kim Y. B. (2017) Improved Optimal Sliding Mode Control for a Non-Linear Vehicle Active Suspension System. Journal of Sound and Vibration, 395, 1-25. https://doi.org/10.1016/j.jsv.2017.02.017.
8. Bai R., Guo D. (2018) Sliding Mode Control of the Active Suspension System with the Dynamics of a Hydraulic Actuator. Complexity, 2018, 5907208. https://doi.org/10.1155/2018/5907208.
9. Deshpande V. S., Mohan B., Shendge P., Phadke S. (2014) Disturbance Observer-Based Sliding Mode Control of Active Suspension Systems. Journal of Sound and Vibration, 333 (11), 2281-2296. https://doi.org/10.1016/j.jsv.2014.01.023.
10. Deshpande V. S., Bhaskara M., Phadke S. (2012) Sliding Mode Control of Active Suspension Systems Using a Disturbance Observer. 12th International Workshop on Variable Structure Systems. IEEE, 70-75. https://doi.org/10.1109/VSS.2012.6163480.
11. Leon-Vargas F., Garelli F., Zapateiro M. (2018) Limiting Vertical Acceleration for Ride Comfort in Active Suspension Systems. Proceedings of the Institution of Mechanical Engineers. Part I: Journal of Systems and Control Engineering, 232 (3), 223-232. https://doi.org/10.1177/0959651817745469.
12. Karkoub M. A., Zribi M. (2006) Active/Semi-Active Suspension Control Using Magnetorheological Actuators. International Journal of Systems Science, 37 (1), 35-44. https://doi.org/10.1080/00207720500436344.
13. East W., Turcotte J., Plante J. S., Julio G. (2021) Experimental Assessment of a Linear Actuator Driven by Magnetorheological Clutches for Automotive Active Suspensions. Journal of intelligent Material Systems and Structures, 32 (9), 955-970. https://doi.org/10.1177/1045389X21991237.
14. Le V. N., Dam H. P., Tran T. D., Nguyen T. K., Kharytonchyk S. V., Kusyak V. A. (2024) Control Voltage Effect on Operational Characteristics of Vehicle Magnetorheological Damper. Nauka i Tehnika = Science & Technique, 23 (5), 417-426. https://doi.org/10.21122/2227-1031-2024-23-5-417-426.
15. Shen X., Peng H. (2003) Analysis of Active Suspension Systems with Hydraulic Actuators. Proceedings of the 2003 IAVSD conference, Atsugi, Japan, August 2003, 2 (2), 10.
16. Liu Y. J., Zeng Q., Liu L., Tong S. (2018) An Adaptive Neural Network Controller for Active Suspension Systems with Hydraulic Actuator. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50 (12), 5351-5360. https://doi.org/10.1109/TSMC.2018.2875187.
17. Su X. (2017) Master-Slave Control For Active Suspension Systems with Hydraulic Actuator dynamics. IEEE Access, 5, 3612-3621. https://doi.org/10.1109/ACCESS.2017.2672598.
18. Rajamani R., Hedrick J. (1994) Performance of Active Automotive Suspensions with Hydraulic Actuators: Theory and Experiment. IEEE, Proceedings of 1994 American Control Conference-ACC'94, 2, 1214-1218. https://doi.org/10.1109/acc.1994.752251.
19. Sam Y., Hudha K. (2006) Modelling and Force Tracking Control of Hydraulic Actuator for an Active Suspension system. 1st IEEE Conference on Industrial Electronics and Applications, 1-6. https://doi.org/10.1109/ICIEA.2006.257242.
20. Wang T., Li G. (2018) Adaptive Critic Optimal Fuzzy Control for Quarter-Car Suspension Systems. 5th International Conference on Information, Cybernetics, and Computational Social Systems (ICCSS), 440-444. https://doi.org/10.1109/ICCSS.2018.8572428.
21. Li H., Liu H., Gao H., Shi P. (2011) Reliable Fuzzy Control for Active Suspension Systems with Actuator Delay and Fault. IEEE Transactions on Fuzzy Systems, 20 (2), 342-357. https://doi.org/10.1109/TFUZZ.2011.2174244.
22. Rao M., Prahlad V. (1997) A Tunable Fuzzy Logic Controller for Vehicle-Active Suspension Systems. Fuzzy Sets and Systems, 85 (1), 11-21. https://doi.org/10.1016/0165-0114(95)00369-X.
23. Ahmed A.E.N.S., Ali A. S., Ghazaly N. M., Abd el-Jaber G. (2015) PID Controller of Active Suspension System for a Quarter Car Model. International Journal of Advances in Engineering & Technology, 8 (6), 899-909.
24. Shafiei B. (2022) A Review on PID Control System Simulation of the Active Suspension System of a Quarter Car Model while Hitting Road Bumps. Journal of The Institution of Engineers (India), Series C, 103 (4), 1001-1011. https://doi.org/10.1007/s40032-022-00821-z.
25. Talib M.H.A., Darns I.Z.M. (2013) Self-Tuning PID Controller for Active Suspension System with Hydraulic Actuator. IEEE Symposium on Computers & Informatics (ISCI). IEEE, 86-91. https://doi.org/10.1109/ISCI.2013.6612381.
26. Mahmoodabadi M., Nejadkourki N. (2022) Optimal Fuzzy Adaptive Robust PID Control for an Active Suspension system. Australian Journal of Mechanical Engineering, 20 (3), 681-691. https://doi.org/10.1080/14484846.2020.1734154.
27. Zhilevich M. (2003) Calculation of Mobile Machine Oscillations in View of Internal Processes in Pneumo-hydraulic Suspension. Nauka i Tehnika = Science & Technique, (5), 46-52 (in Russian).
28. Hurski N., Karami A. K. (2010) Modeling and Optimization of Vehicle Suspension Oscillations. Nauka i Tehnika = Science & Technique, (1), 44-47 (in Russian).
29. Gao H., Jézéque L., Cabrol E., Vitry B. (2020) Robust Design of Suspension System with Polynomial Chaos Expansion and Machine Learning. Nauka i Tehnika = Science & Technique, 19 (1), 43-54. https://doi.org/10.21122/2227-1031-2020-19-1-43-54.