1. Shishkevich A. N. (2018) Endovascular Treatment of Bifurcation Lesions of Coronary Arteries. Saint-Petersburg, 203 (in Russian).
2. Karjalainen P. P., Nammas W. (2011) Bioactive Stents for Percutaneous Coronary Intervention: A New Forerunner on the Track. Interventional Cardiology, 3(5), 527-529. https://doi.org/10.2217/ica.11.61.
3. Nerlekar N., Ha F. J., Verma K. P., Bennett M. R., Cameron J. D., Meredith I. T., Brown A. J. (2016) Percutaneous Coronary Intervention Using Drug-Eluting Stents Versus Coronary Artery Bypass Grafting for Unprotected Left Main Coronary Artery Stenosis: A Meta-Analysis of Randomized Trials. Circulation: Cardiovascular Interventions, 9 (12), 17-25. https://doi.org/10.1161/circinterven tions.116.004729.
4. Biondi-Zoccai G. G., Lotrionte M., Moretti C., Meliga E., Agostoni P., Valgimigli M., Migliorini A., [et al.]. (2008) A Collaborative Systematic Review and Meta-Analysis on 1278 Patients Undergoing Percutaneous Drug-Eluting Stenting for Unprotected Left Main Coronary Artery Disease. American Heart Journal, 155 (2), 274-283. https://doi.org/10.1016/j.ahj.2007.10.009.
5. Kudryashov A. N., Trebushat D. V., Verin V. V., Vorob'ev V. L. (2017) Current Generation of Drug-Eluting Stents: Focus on Sirolimus-Coated Stent “Calypso”. Patologiya Krovoobrashcheniya i Kardiokhirurgiya = Circulatory Pathology and Cardiac Surgery, 21 (1), 37-43. https://doi.org/10.21688/1681-3472-2017-1-37-43 (in Russian).
6. Serruys P. W., Kutryk M. J. B., Rensing B. J. (ed.). (1998) Handbook of Coronary Stents. Second ed. London: Martin Dunitz. 343.
7. Ivanova N. M., Arysheva G. V., Konishchev M. E., Pichugin V. F. (2014) Coatings Based on Titanium Oxynitrides Deposited by Reactive Magnetron Sputtering: Surface Morphology and Chemical Composition. Sovremennye Tekhnika i Tekhnologii: Sb. Dokl. [Modern Equipment and Technologies: Collection of Reports]. Tomsk, National Research Tomsk Polytechnic University, 327-328 (in Russian).
8. Farhatnia Y., Tan A., Motiwala A., Cousins B. G., Seifalian A. M. (2013) Evolution of Covered Stents in the Contemporary Era: Clinical Application, Materials and Manufacturing Strategies Using Nanotechnology. Biotechnology Advances, 31 (5), 524-542. https://doi.org/10.1016/j.biotechadv.2012.12.010.
9. Kabir A. M., Selvarajah A., Seifalian A. M. (2011) How safe and How Good are drug-Eluting Stents? Future Cardiology, 7 (2), 251-270. https://doi.org/10.2217/fca.11.1.
10. Mani G., Feldman M. D., Patel D., Agrawal C. M. (2007) Coronary Stents: A Materials Perspective. Biomaterials, 28 (9), 1689-1710. https://doi.org/10.1016/j.biomaterials.2006.11.042.
11. Steffel J., Eberli F. R., Lüscher T. F., Tanner F. C. (2008) Drug-Eluting Stents - what Should be Improved? Annals of Medicine, 40 (4), 242-252. https://doi.org/10.1080/07853890801964948.
12. Billinger M., Buddeberg F., Hubbell J. A., Elbert D. L., Schaffner T., Mettler D., Windecker S., Meier B., Hess O. M. Polymer Stent Coating for Prevention of Neointimal Hyperplasia. Journal of Invasive Cardiology, 18 (9), 423-427.
13. Kim J. H., Shin J. H., Shin D. H., Moon M.-W., Park K., Kim T.-H., Shin K. M., Won Y. H., Han D. K., Lee K.-R. (2014) Comparison of Diamond-Like Carbon-Coated Nitinol Stents with or Without Polyethylene Glycol Grafting and Uncoated Nitinol Stents in a Canine Iliac Artery Model. British Journal of Radiology, 84 (999), 210-215. https://doi.org/10.1259/bjr/21667521.
14. Ries T., Buhk J. H., Kucinski T., Goebell E., Grzyska U., Zeumer H., Fiehler J. (2006) Intravenous Administration of Acetylsalicylic Acid During Endovascular Treatment of Cerebral Aneurysms Reduces the Rate of Thromboembolic Events. Stroke, 37 (7), 1816-1821. https://doi.org/10.1161/01.str.0000226933.44962.a6.
15. Zhu W., Tian Y., Zhou L. F., Wang Y., Song D., Mao Y., Yang G. Y. (2008) Development of a Novel Endothelial Cell-Seeded Endovascular Stent for Intracranial Aneurysm Therapy. Journal of Biomedical Materials Research Part A, 85 (3), 715-721. https://doi.org/10.1002/jbm.a.31592.
16. Lotkov A. I., Antonova L. V., Kashin O. A., Matveeva V. G., Kudryashov A. N. (2017) Surface Modification of Bare-Metal Stents for Preventing Restenosis (Part 1). Complex Issues of Cardiovascular Diseases, (1), 122-130. https://doi.org/10.17802/2306-1278-2017-1-122-130 (in Russian).
17. Yang P., Leng Y. X., Zhao A. S., Zhou H. F., Xu L. X., Hong S., Huang N. (2006) Blood Compatibility Improvement of Titanium Oxide Film Modified by Phosphorus Ion Implantation. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 242 (1-2), 15-17. https://doi.org/10.1016/j.nimb. 2005.08.099.
18. Zhang F., Chen Y., Zheng Z., Huang N., Liu X., Chen A., Jiang Z. (1998) Synthesis and Blood Compatibility of Rutile-Type Titanium Oxide Coated LTI-Carbon. Science in China Series C: Life Sciences, 41 (4), 400-405. https://doi.org/10.1007/bf02882740.
19. Pavanelli W. R., Silva J. J. N. (2010) The Role of Nitric Oxide in Immune Response Against Trypanosoma Cruzi Infection. The Open Nitric Oxide Journal, 2 (1), 1-10. https://doi.org/10.2174/1875042701002010001.
20. Tousoulis D., Kampoli A. M., Tentolouris Nikolaos Papageorgiou C., Stefanadis C. (2012) The Role of Nitric Oxide on Endothelial Function. Current Vascular Pharmacology, 10 (1), 4-18. https://doi.org/10.2174/157016112798829760.
21. Avgustovsky P. A., Komarovskaya V. M. (adviser) (2021) Application of Vacuum-Arc Evaporation for Deposition of Coatings Based on Titanium Oxynitride on Arterial Stents. Inzhenerno-Pedagogicheskoe Obrazovanie v XXI veke: Materialy Respublikanskoi Nauchno-Prakticheskoi Konferentsii Molodykh Uchenykh i Studentov (25-26 Noyabrya 2021 g.) [Engineering and Pedagogical Education in the 21st Century: Proceedings of the Republican Scientific-Practical Conference of Young Scientists and Students (November 25-26, 2021)]. Minsk, Belarusian National Technical University, 187-190 (in Russian).
22. Sobrevia L., Ooi L., Ryan S., Steinert J. R. (2016) Nitric Oxide: A Regulator of Cellular Function in Health and Diseas. Oxidative Medicine and Cellular Longevity, 2016, 1-2. https://doi.org/10.1155/2016/9782346.
23. Windecker S., Mayer I., De Pasquale G., Maier W., Dirsch O., De Groot P., Wu Y.-P., Noll G., Leskosek B., Meier B., Hess O. M. (2001) Stent Coating with Titanium-NitrideOxide for Reduction of Neointimal Hyperplasia. Circulation, 104 (8), 928-933. https://doi.org/10.1161/hc401.093146.
24. Krajewski S., Neumann B., Kurz J., Perle N., Avci-Adali M., Cattaneo G., Wendel H. P. (2015) Preclinical Evaluation of the Thrombogenicity and Endothelialization of Bare Metal and Surface-Coated Neurovascular Stents. American Journal of Neuroradiology, 36 (1), 133-139. https://doi.org/10.3174/ajnr.a4109.
25. Suzuki T., Kopia G., Hayashi S. I., Bailey L. R., Llanos G., Wilensky R. [et al.] (2001) Stent-Based Delivery of Sirolimus Reduces Neointimal Formation in a Porcine Coronary Model. Circulation, 104 (10), 1188-1193. https://doi.org/10.1161/hc3601.093987.
26. Windecker S., Simon R., Lins M. (2005) Randomized Comparison of a Titanium-Nitride-Oxide-Coated Stent with a Stainless Steel Stent for Coronary Revascularization: the TiNOX Trial. ACC Current Journal Review, 14 (9), 43. https://doi.org/10.1016/j.accreview.2005.08.233.
27. Liu C. C., Wang J. Y., Yen I. P., Lai C. J. (2011) One-Year Follow-Up after Percutaneous Coronary Intervention with Titanium-Nitride-Oxide-Coated Stents Versus Paclitaxel-Eluting Stents in Patients from Real-World Clinical Practice. Acta Cardiologica Sinica, 27 (2), 94-100.
28. Daoud F. C., Létinier L., Moore N., Coste P., Karjalainen P. P. (2020) Efficacy and Safety of TiNO-Coated Stents 1 Versus Drug-Eluting Coronary Stents. Systematic Literature Review and Meta-Analysis [Preprint]. medRxiv. https://doi.org/10.1101/2020.12.19.202485642021.
29. Tonino P. A., Pijls N. H., Collet C., Nammas W., Van der Heyden J., Romppanen H. (2020) Titanium-Nitride-Oxide-Coated Versus Everolimus-Eluting Stents in Acute Coronary Syndrome: The Randomized TIDES-ACS Trial. JACC Cardiovasc Interventions, 13 (1), 1697-1705. https://doi.org/10.1016/j.jcin.2020.04.021.
30. Khlusov I. A., Pichugin V. F., Pustovalova A. A., Konischev M. E., Dzyuman A. N., Epple M., Ulbricht M., Cicinskas E., Gulaya V. S., Vikhareva V. V. (2015) Electrokinetic Properties, In Vitro Dissolution, Potential Biocompatibility of Titanium Oxide and Oxynitride Films for Cardiovascular Stents. Bulletin of Siberian Medicine, 14 (2), 55-66 (in Russian). https://doi.org/10.20538/1682-0363-2015-2-55-66.
31. Beshchasna N., Ho A. Y. K., Saqib M., Kraśkiewicz H., Wasyluk Ł., Kuzmin O. [et al.] Surface Evaluation of Titanium Oxynitride Coatings used for Developing Layered Cardiovascular Stents. Materials Science and Engineering: C, 99, 405-416. https://doi.org/10.1016/j.msec.2019.01.131.
32. Duta O. C., Ficai D., Ficai A., Andronescu E., Beshchasna N., Saqib M., Opitz J., Kraskiewicz H., Wasyluk L., Kuzmin O., Pichugin V. (2018) Titanium Oxynitride Coatings Deposited by Magnetron Sputtering for Improvement of Cardiovascular Stent Design. Proceedings of the 4th World Congress on New Technologies, Madrid, 19-21 August 2018. Madrid, 18-20. https://doi.org/10.11159/icnfa18.112.
33. Pana I., Braic V., Dinu M., Mouele E. S. M., Parau A. C., Petrik L. F., Braic M. (2020) In Vitro Corrosion of Titanium Nitride and Oxynitride-Based Biocompatible Coatings Deposited on Stainless Steel. Coatings, 10 (8), 710-728. https://doi.org/10.3390/coatings10080710.
34. Velasco L., Olaya J. J., Rodil S. E. (2016) Effect of Si Addition on the Structure and Corrosion Behavior of NbN thin Films Deposited by Unbalanced Magnetron Sputtering. Applied Physics A, 122 (2), 1-10. https://doi.org/10.1007/s00339-016-9639-0.
35. Zhang X. G. (1996) Corrosion and Electrochemistry of Zinc. New York, Springer, 474 https://doi.org/10.1007/978-1-4757-9877-7.
36. Ding J. C., Wang Q. M., Liu Z. R., Jeong S., Zhang T. F., Kim K. H. (2019) Influence of Bias Voltage on the Microstructure, Mechanical and Corrosion Properties of AlSiN Films Deposited by HiPIMS Technique. Journal of Alloys and Compounds, 772, 112-121. https://doi.org/10.1016/j.jallcom.2018.09.063.
37. Kertzman Z., Marchal J., Suarez M., Staia M. H., Filip P., Kohli P., Aouadi S. M. (2008) Mechanical, Tribological, and Biocompatibility Properties of ZrN-Ag Nanocomposite Films. Journal of Biomedical Materials Research Part A, 84 (4), 1061-1067. https://doi.org/10.1002/jbm.a.31533.
38. Kirkland N. T., Schiller T., Medhekar N., Birbilis N. (2012) Exploring Graphene as a Corrosion Protection Barrier. Corrosion Science, 56, 1-4. https://doi.org/10.1016/j.corsci.2011.12.003.
39. Ahmad Z. (2006) Principles of Corrosion Engineering and Corrosion Control. Amsterdam, Elsevier. 673. https://doi.org/10.1016/B978-0-7506-5924-6.X5000-4.
40. Muñoz-Consuegra C. E., Rodríguez-Palacios J. M., Arboine-Aguirre L., Sierra-Fragoso Á., Zapata-Rodríguez A. (2018) Comparison of Clinical Outcomes Regarding the use of Titanium-Nitride-Oxide-Coated Stents (Titan) Versus Zotarolimus-Eluting Stents (Endeavor) in Patients with ST-Segment Elevation Myocardial Infarction (STEMI): An Experience From a Cardiac Center-Third Care Level. Revista Mexicana de Cardiología, 29 (1), 13-26.