1. Шишкевич, А. Н. Эндоваскулярное лечение бифуркационного поражения коронарных артерий: дис. … д-ра мед. наук: 14.01.26 / А. Н. Шишкевич. СПб., 2018. 203 л.
2. Karjalainen, P. P. Bioactive Stents for Percutaneous Coronary Intervention: A New Forerunner on the Track / P. P. Karjalainen, W. Nammas // Interventional Cardiology. 2011. Vol. 3, № 5. P. 527-529. https://doi.org/10.2217/ica.11.61.
3. Percutaneous Coronary Intervention Using Drug-Eluting Stents Versus Coronary Artery Bypass Grafting for Unprotected Left Main Coronary Artery Stenosis: A Meta-Analysis of Randomized Trials / N. Nerlekar [et al.] // Circ. Cardiovasc. Interv. 2016. Vol. 9, No 12. P. 17-25. https://doi.org/10.1161/circinterventions.116.004729.
4. A Collaborative Systematic Review and Meta-Analysis on 1278 Patients Undergoing Percutaneous Drug-Eluting Stenting for Unprotected Left Main Coronary Artery Disease / G. G. Biondi-Zoccai [et al.] // Am. Heart. J. 2008. Vol. 155, No 2. P. 274-283. https://doi.org/10.1016/j.ahj.2007.10.009.
5. Современное поколение стентов с лекарственным покрытием: фокус на сиролимус-покрытый стент «Калипсо» / А. Н. Кудряшов [и др.] // Патология кровообращения и кардиохирургия. 2017. Т. 21, № 1. С. 37-43. https://doi.org/10.21688/1681-3472-2017-1-37-43.
6. Serruys, P.W. Handbook of Coronary Stents / P. W. Serruys, M. J. B. Kutryk; ed. by P. W. Serruys, B. J. Rensing. Second ed. London: Martin Dunitz, 1998. 343 p.
7. Покрытия на основе оксинитридов титана, осажденные методом реактивного магнетронного распыления: морфология поверхности и химический состав / Н. М. Иванова [и др.] // Современные техника и технологии: сб. докл. / Нац. исслед. томский политех. ун-т; редкол.: О. В. Сидорова [и др.]. Томск, 2014. С. 327-328.
8. Evolution of Covered Stents in the Contemporary Era: Clinical Application, Materials and Manufacturing Strategies Using Nanotechnology / Y. Farhatnia [et al.] // Biotechnol Adv. 2013. Vol. 31, № 5. P. 524-542. https://doi.org/10.1016/j.biotechadv.2012.12.010.
9. Kabir, A. M. How Safe and how Good Are Drug-Eluting Stents? / A. M. Kabir, A. Selvarajah, A. M. Seifalian // Future Cardiol. 2011. Vol. 7, No 2. P. 251-270. https://doi.org/10.2217/fca.11.1.
10. Coronary stents: A Materials Perspective / G. Mani [et al.] // Biomaterials. 2007. Vol. 28, No 9. P. 1689-1710. https://doi.org/10.1016/j.biomaterials.2006.11.042.
11. Drug-Eluting Stents - What Should be Improved? / J. Steffel [et al.] // Ann Med. 2008. Vol. 40, No 4. P. 242-252. https://doi.org/10.1080/07853890801964948.
12. Polymer Stent Coating for Prevention of Neointimal Hyperplasia / M. Billinger [et al.] // J. Invasive Cardiol. 2006. Vol. 18, No 9. P. 423-427.
13. Comparison of Diamond-Like Carbon-Coated Nitinol Stents with or Without Polyethylene Glycol Grafting and Uncoated Nitinol Stents in a Canine Iliac Artery Model / J. H. Kim [et al.] // Br. J. Radiol. 2011. Vol. 84, No 999. P. 210-215. https://doi.org/10.1259/bjr/21667521.
14. Intravenous Administration of Acetylsalicylic Acid During Endovascular Treatment of Cerebral Aneurysms Reduces the rate of Thromboembolic Events / T. Ries [et al.] // Stroke. 2006. Vol. 37, No 7. P. 1816-1821. https://doi.org/10.1161/01.str.0000226933.44962.a6.
15. Development of a Novel Endothelial Cell-Seeded Endovascular Stent for Intracranial Aneurysm Therapy / W. Zhu [et al.] // J. Biomed. Mater. Res A. 2008. Vol. 85, No 3. P. 715-721. https://doi.org/10.1002/jbm.a.31592.
16. Основные направления модификации поверхности металлических эндоваскулярных стентов в решении проблемы рестенозов (часть 1) / А. И. Лотков [и др.] // Комплексные проблемы сердечно-сосудистых заболеваний. 2017. № 1. С. 122-130. https://doi.org/10.17802/2306-1278-2017-1-122-130.
17. Blood Compatibility Improvement of Titanium Oxide Film Modified by Phosphorus Ion Implantation / P. Yang [et al.] // Nucl. Instrum. Meth. B. 2006. Vol. 242, No 1-2. P. 15-17. https://doi.org/10.1016/j.nimb.2005.08.099.
18. Synthesis and Blood Compatibility of Rutile-Type Titanium Oxide Coated LTI-Carbon / F. Zhang [et al.] // Sci. China C. Life Sci. 1998. Vol. 41, № 4. P. 400-405. https://doi.org/10.1007/bf02882740.
19. Pavanelli, W. R. The Role of Nitric Oxide in Immune Response Against Trypanosoma Cruzi Infection / W. R. Pavanelli, J. J. N. Silva // J. Nitric. Oxide. 2010. Vol. 2. P. 1-10. https://doi.org/10.2174/1875042701002010001.
20. The Role of Nitric Oxide on Endothelial Function / D. Tousoulis [et al.] // Curr. Vasc. Pharm. 2012. Vol. 10, No 1. P. 4-18. https://doi.org/10.2174/157016112798829760.
21. Августовский, П. А. Применение вакуумно-дугового испарения для нанесения покрытий на основе оксинитрида титана на артериальные стенты / П. А. Августовский; В. М. Комаровская // Инженерно-педагогическое образование в XXI веке: материалы республ. науч.-практ. конф. молодых ученых и студ. (25-26 ноября 2021 г.) / редкол.: А. М. Маляревич [и др.]. Минск: БНТУ, 2021. С. 187-190.
22. Nitric Oxide: A Regulator of Cellular Function in Health and Diseas / L. Sobrevia [et al.] // Oxid Med. Cell Longev. 2016. Vol. 2016. P. 1-2. https://doi.org/10.1155/2016/9782346.
23. Stent Coating with Titanium-Nitride-Oxide for Reduction of Neointimal Hyperplasia / S. Windecker [et al.] // Circulation. 2001. Vol. 104, No 8. P. 928-933. https://doi.org/10.1161/hc3401.093146.
24. Preclinical Evaluation of the Thrombogenicity and Endothelialization of Bare Metal and Surface-Coated Neurovascular Stents / S. Krajewskia [et al.] // AJNR Am J Neuroradiol. 2015. Vol. 36, No 1. P. 133-139. https://doi.org/10.3174/ajnr.a4109.
25. Stent-Based Delivery of Sirolimus Reduces Neointimal Formation in a Porcine Coronary Model / T. Suzuki [et al.] // Circulation. 2001. Vol. 104, No 10. P. 1188-1193. https://doi.org/10.1161/hc3601.093987.
26. Randomized Comparison of a Titanium-Nitride-Oxide-Coated Stent with a Stainless Steel Stent for Coronary Revascularization: the TiNOX Trial / S. Windecker [et al.] // ACC Current Journal Review. 2005. Vol. 14, Iss. 9. P. 43. https://doi.org/10.1016/j.accreview.2005.08.233.
27. One-Year Follow-Up after Percutaneous Coronary Intervention with Titanium-Nitride-Oxide-Coated Stents Versus Paclitaxel-Eluting Stents in Patients from Real-World Clinical Practice / C. C. Liu [et al.] // Acta Cardiol. Sin. 2011. Vol. 27, No 2. P. 94-100.
28. Efficacy and safety of TiNO-Coated Stents 1 Versus Drug-eluting Coronary Stents. Systematic Literature Review and Meta-Analysis / F.C. Daoud [et al.]. 2021. 25 p. (Preprint / medRxiv) https://doi.org/10.1101/2020.12.19.20248564.
29. Titanium-Nitride-Oxide-Coated Versus Everolimus-Eluting Stents in Acute Coronary Syndrome: The Randomized TIDES-ACS Trial / P. A. L. Tonino [et al.] // JACC Cardiovasc Interventions. 2020. Vol. 13, No 14. P. 1697-1705. https://doi.org/10.1016/j.jcin.2020.04.021.
30. Электрокинетические свойства, растворение In Vitro, потенциальная биосовместимость оксидных и оксинитридных пленок титана для сердечно-сосудистых стентов / И. А. Хлусов [и др.] // Бюллетень сибирской медицины. 2015. Т. 14, № 2. С. 55-66. https://doi.org/10.20538/1682-0363-2015-2-55-66.
31. Surface Evaluation of Titanium Oxynitride Coatings used for Developing Layered Cardiovascular Stents / N. Beshchasna [et al.] // Mat. Sci. Eng. C-Mater. 2019. Vol. 99. P. 405-416. https://doi.org/10.1016/j.msec.2019.01.131.
32. Titanium Oxynitride Coatings Deposited by Magnetron Sputtering for Improvement of Cardiovascular Stent Design / O. C. Duta [et al.] // Conference: The 4th World Congress on New Technologies, Madrid, 19-21 August 2018. Madrid, 2018. P. 18-20. https://doi.org/10.11159/icnfa18.112.
33. In Vitro Corrosion of Titanium Nitride and Oxynitride-Based Biocompatible Coatings Deposited on Stainless Steel / I. Pana [et al.] // Coatings. 2020. Vol. 10, No 8. P. 710-728. https://doi.org/10.3390/coatings10080710.
34. Velasco, L. Effect of Si Addition on the Structure and Corrosion Behavior of NbN thin Films Deposited by Unbalanced Magnetron Sputtering / L. Velasco, J. J. Olaya, S. E. Rodil // Appl. Phys. A Mater. Sci. Process. 2016. Vol. 122, No 2. P. 1-10. https://doi.org/10.1007/s00339-016-9639-0.
35. Zhang, X. G. Corrosion and Electrochemistry of Zinc / X.G. Zhang - New York: Springer, 1996. 474 p. https://doi.org/10.1007/978-1-4757-9877-7.
36. Influence of Bias Voltage on the Microstructure, Mechanical and Corrosion Properties of AlSiN Films Deposited by HiPIMS technique / J. C. Ding [et al.] // J. Alloy. Compd. 2019. Vol. 772. P. 112-121. https://doi.org/10.1016/j.jallcom.2018.09.063.
37. Mechanical, Tribological, and Biocompatibility Properties of ZrN-Ag Nanocomposite Films / Z. Kertzman [et al.] // J. Biomed. Mater. Res. Part A. 2008. Vol. 84, No 4. P. 1061-1067. https://doi.org/10.1002/jbm.a.31533.
38. Exploring Graphene as a Corrosion Protection Barrier / N. T. Kirkland [et al.] // Corros. Sci. 2012. Vol. 56. P. 1-4. https://doi.org/10.1016/j.corsci.2011.12.003.
39. Ahmad, Z. Principles of Corrosion Engineering and Corrosion Control / Z. Ahmad. Amsterdam: Elsevier, 2006. 673 p. https://doi.org/10.1016/B978-0-7506-5924-6.X5000-4.
40. Comparison of Clinical Outcomes Regarding the use of Titanium-Nitride-Oxide-Coated Stents (Titan) Versus Zotarolimus-Eluting Stents (Endeavor) in Patients with ST-Segment Elevation Myocardial Infarction (STEMI): An Experience From a Cardiac Center-Third Care Level / C. E. Muñoz-Consuegra [et al.] // Rev. Mex. Cardiol. 2018. Vol. 29, No 1. P. 13-26.