Method for Determining Elements of Internal Orientation Calibration in Multi-Matrix Optoelectronic Devices
https://doi.org/10.21122/2227-1031-2020-19-5-428-436
Abstract
About the Authors
M. A. StarasotnikauBelarus
Minsk
I. V. Padskrebkin
Belarus
Minsk
R. V. Feodortsau
Belarus
Address for correspondence: Feodortsau Rostislav V. – Belarusian National Technical University, 22, Ya. Kolasа str., 220013, Minsk, Republic of Belarus. Tel.: +375 17 292-62-86
ltt@bntu.byReferences
1. Starasotnikau N. O. (2014) Highly-Accurate Digital Autocollimator for Measuring Small Angles. Novye Napravleniya Razvitiya Priborostroeniya: Materialy 7-i Mezhdunar. Stud. Nauch.-Tekhn. Konf., 23–25 Apr. 2014 g. [New Directions in Instrumentation Development: Proceedings of the 7th International Students’ Scientific and Technical Conference, April 23–25, 2014]. Minsk, BNTU, 244 (in Russian).
2. Jinyun Yan, Jiang Jie, Zhang Guangjun (2016) Dynamic Imaging Model and Parameter Optimization for a Star Tracker. Optics Express, 24 (6), 5961–5983. https://doi.org/10.1364/oe.24.005961.
3. Xiaoming Yin, Xiang Li, Liping Zhao, Zhongping Fang (2009) Adaptive Thresholding and Dynamic Windowing Method for Automatic Centroid Detection of Digital Shack – Hartmann Wavefront Sensor. Applied Optics, 48 (32), 6088–6098. https://doi.org/10.1364/ao.48.006088.
4. Huang Zhengrong, Jiangtao Xi, Yanguang Yu (2015) Accurate Projector Calibration Based on a New Point to Point Mapping Relationship Between the Camera and Projector Images. Applied Optics, 54 (3), 347–356. https://doi.org/10.1364/ao.54.000347.
5. Lobanov A. N., Burov M. I., Krasnopevtsev B. V. (1987) Photogrammetry. Moscow, Nedra Publ. 308 (in Russian).
6. Arkhipov S. A., Gasitch G. V., Zavarzin V. I., Morozov S. A. (2008) Photogrammetric Parameters of Optical and Electronic Apparatus. Vestnik Moskovskogo Gosudarstvennogo Tekhnicheskogo Universiteta imeni N. E. Baumana = Herald of the Bauman Moscow State Technical University. Series Instrument Engineering, (4), 105–115 (in Russian).
7. Starasotnikau N. O., Feodortsau R. V. (2015) Estimation of Accurate Determination for Coordinates of Gravity Energy Center in Collimator Test-Object in Respect of Control Schemes for Optoelectronic Devices with Matrix Photo-Detectors. Nauka i Tekhnika = Science & Technique, (5), 71–76 (in Russian).
8. Gonzalez R., Woods R., Eddins S. (2004) Digital Image Processing Using MatLab. New Jersey, Prentice Hall.
9. Starosotnikau N. O., Feodortsau R. V. (2016) Method for Decreasing Influence of Background Signal Noise while Determining Energy Gravity Centre Coordinates for Images in Electrooptical Devices. Priborostroenie-2016: Materialy 9-i Mezhdunar. Nauch.-Tekhn. Konf., 23–25 Noyab. 2016 g. [Instrumentation-2016: Materials of the 9th International Scientific and Technical Conference]. Minsk, Belarusian National Technical University, 133–135 (in Russian).
10. Starasotnikau N. O., Feodortsau R. V. (2018) Accuracy Comparison of Algorithms for Determination of Image Center Coordinates in Optoelectronic Devices. Nauka i Tekhnika = Science and Technique, 17 (1), 79–86. https://doi.org/10.21122/2227-1031-2018-17-1-79-86 (in Russian).
Review
For citations:
Starasotnikau M.A., Padskrebkin I.V., Feodortsau R.V. Method for Determining Elements of Internal Orientation Calibration in Multi-Matrix Optoelectronic Devices. Science & Technique. 2020;19(5):428-436. (In Russ.) https://doi.org/10.21122/2227-1031-2020-19-5-428-436