Preview

Science & Technique

Advanced search

CONDUCTIVE CHANNEL FOR ENERGY TRANSMISSION

Abstract

Laser spark obtained by using a conical optics is much more appropriate to form conducting channels in atmosphere. Only two types of lasers are actively considered to be used in forming high-conductivity channels in atmosphere, controlled by laser spark: pulsed sub-microsecond gas and chemical lasers (CO2, DF) and short pulse solid-state and UV lasers. 

Main advantage of short pulse lasers is their ability in forming of super long ionized channels with a characteristic diameter of ~100  µ  in atmosphere along the  beam propagation direction. At estimated electron densities below  10 ⋅ 16 cm3 in these filaments and laser wavelengths in the range of 0,5–1,0 mm, the plasma barely absorbs laser radiation.  In this case, the length of the track composed of many filaments is determined by the laser intensity and may reach many kilometers at a femtosecond pulse energy of ~100 mJ. However, these lasers could not be used to form high-conductivity long channels in atmosphere. The ohmic resistance of this type a conducting channels turned out to be very high, and the gas in the channels could not be strongly heated (< 1 J). An electric breakdown controlled by radiation of femtosecond solid-state laser was implemented in only at a length of 3 m with a voltage of 2 MV across the discharge gap (670 kV/m).

Not so long ago scientific group from P. N. Lebedev has improved that result, the discharge gap – 1 m had been broken under KrF laser irradiation when switching high-voltage (up to 390 kV/m) electric discharge by 100-ns UV pulses. Our previous result  –  16 m long conducting channel controlled by a  laser spark at the voltage  –  3 MV  – was obtained more than 20 years ago in Russia and Japan by using pulsed CO2  laser with energy  –  0,5 kJ. An average electric field strength  was < 190 kV/m. It is still too much for efficient applications.

About the Author

V. V. Apollonov
A. M. Prokhorov General Physics Institute RAS
Russian Federation


References

1. Apollonov, V. V., Baitsur, G. G., Ermachenko, A. V., Firsov, K. N., Konev, V. M., Kononov, I. G., Koval’chuk, O. B., Kralin, V. V., Minenkov, V. R., Prokhorov, A. M., Semenov, S. K., Shubin, B. G., & Yamshchikov, V. A. (1991) High-Power Molecular Lasers Pumped by a Volume Self-Sustained Discharge. Optical Society of America. B, 8 (2), 220–229. doi: 10.1364/JOSAB.8.000220.

2. Alexandrov, G. N., Ivanov, V. L., Kadzov, G. D., Parfenov, V. A., Pakhomov, L. N., Petrun'kin, V. Iu., Podlevskii, V. A., & Seleznev, Iu. G. (1980) On the Possibility of Increasing the Efficiency of the Protective Action of Lightning by Means of a Laser Spark. Elektrichestvo (Electricity), 2, 47–48 (in Russian).

3. Kinoshita, F., Morooka, Y., Uchiumi, M., Tanaka, T., Chang, Y.-M., Muraoka, K., Tsuji, T., Honda, C., Miki, M., & Wada, A. (1997) Laser-Triggered Lightning Under Optimized Laser Beam Conditions. Proc. XII Intern. Conf. on Gas Discharge and their Applications. Greifswald, Germany, 475–479.

4. Diels, J.-C., & Rudolph, W. (2006) Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on Femtosecond Time Scale. Burlington: Acad. Press.

5. Kasparian, J., Rodriquez, M., M'ejean, G., Yu, J., Salmon, E., Wille, H., Bourayou, R., Frey, S., André, A., Mysyrowicz, Y.-B., Sauerbrey, R., Wolf, J.-P., & Wöste, L. (2003) White-Light Filaments for Atmospheric Analysis. Science, 301 (5639), 61–64. doi: 10.1126/science.1085020.

6. Berge, L., Skupin, S., Nuter, R., Kasparian, J., & Wolf, J.-P. (2007) Ultrashort Filaments of Light in Weakly Ionized, Optically Transparent Media. Reports on Progress in Physics, 70, 1633. doi:10.1088/0034-4885/70/10/R03.

7. Zvorykin, V. D., Levchenko, A. O., & Ustinovskii, N. N. (2011) Control of Extended High-Voltage Electric Discharges in Atmospheric Air by UV KrF-Laser Radiation. Kvantovaya Elektronika [Quantum Elektronika], 41, 227–233. doi: 10. 1070/QE2011v041n03ABEH014477 (in Russian).

8. Apollonov, V. V., Vasilyak, L. M., Kazantsev, S. Yu., Kononov, I. G., Poliakov, D. N., Saifulin, A V., & Firsov, K. N. (2002) The Direction of the Electric Discharge Continuous Laser Spark by Focusing Radiation CO2-Conical Mirror. Kvantovaya Elektronika [Quantum Elektronika], 32 (2), 115–120 doi:10.1070/qe2002v032n02abeh002140 (in Russian).

9. Bazelyan, E. M., & Raizer, Yu. P. (2001) Physics of Lightning and Lightning Protection. Moscow: Fizmatlit. 320 p. (in Russian).

10. Apollonov, V. V. (2005) Feasibility Study of a CO2-Laser Based Lightning-Protection System Realization. Optical Engineering, 44 (1), 014302. doi:10.1117/1.1829096.

11. Pyatnitskii, L. N., & Korobkin, V. V. (2000) Wave Beams with Compensated Diffraction and Extended Plasma Channels Based on Them. Trudy Instituta Obshchei Fiziki (Proceedings of the Institute of General Physics), 57, 59–112 (in Russian).

12. Publications of the Teramobile Project. Available at: http://www.teramobile.org/publis.html. (accessed 22.10.2013).

13. Bazelyan, E. M., & Raizer, Yu. P. (1997) Spark Discharge. Moscow: Publisher Moscow Institute of Physics and Technology. 320 p. (in Russian).

14. Aleksandrov, G. N. (1967) On the Mechanism of Spark Discharge with a Negatively Charged Tip. Lightning. Zhurnal Tekhnicheskoi Fiziki (Journal of Technical Physics), 37 (2), 288–293 (in Russian).

15. Raizer, Yu. P. (1974) Laser Spark and Propagation of Discharges. Moscow: Nauka. 240 p. (in Russian).

16. Fortov, V. E. (2000) Encyclopedia of Low Temperature Plasma. Book 2, Introductory Volume. Moscow, Nauka: Interperiodicals. 634 p. (in Russian).

17. Apollonov, V. V., Kiiko, V. V., Kislov, V. I., Suzdal’tsev, A. G., & Egorov, A. B. (2003) High-Frequency Repetitively Pulsed Operating Regime in High-Power Wide-Aperture Lasers. Kvantovaya Elektronika [Quantum Elektronika], 33 (9), 753–757. doi:10.1070/qe2003v033n09abeh002496 (in Russian).

18. Grachev, G. N., Ponomarenko, A. G., Smirnov, A. L., Statsenko, P. A., Tishchenko, V. N., & Trashkeev, S. I. (2005) A Pulsating Optical Discharge Moving in a Gas. Kvantovaya Elektronika [Quantum Elektronika], 35 (11), 973–975. doi:10.1070/qe2005v035n11abeh013026 (in Russian).

19. Apollonov, V. V. (2009) Super Long Conductive Canal for Energy Delivery. Proc. X Intern. Conf. on Photonics and Optoelectronics. Wuhan, China, 13.

20. Apollonov, V. V., Apollonova, Z. P., Vagin, Iu. S., & Vagina, T. G. (2009) Sposob Sozdaniya Tokoprovodyashchikh Kanalov v Neprovodyashchei Srede (Method for the Formation of Conducting Channels in a Nonconducting Medium). Patent of the Russian Federation no. 2400005 (in Russian).

21. Fuks, N. A. (1955) Mechanics of Aerosols. Moscow: Publisher Academy of Sciences of the USSR. 353 p. (in Russian).

22. Ageev, V. P., Barchukov, A. I., Bunkin, F. V., Konov, V. I., Silenok, A. S., & Chapliev, N. I. (1977) Investigation of the Mechanical Effect of CO2 Laser Radiation Pulses on Solid Targets in Gaseous Media. Sov. J. Quantum Electron., 7 (2), 171–176; Ageev, V. P., Barchukov, A. I., Bunkin, F. V., Konov, V. I., Prokhorov, A. M., Silenok, A. S.,& Chapliev, N. I. (1977) Laser Air-Breathing Jet Engine. Sov. J. Quantum Electron, 7 (12), 1430–1437.

23. Metal Nanopowders. Available at: http://www. nanosized-powders.com. (accessed 22.10.2013).

24. Rukhadze, A. A., & Shpigel’, N. S. (1965) Elektricheskii Vzryv Provodnikov (Electric Explosion of Conductors). Moscow, Mir. 341 p. (in Russian).

25. Gerasimenko, N. I., Grashina, N. A., Medvedkov, A. G., Meshcheryakov, A. B., & Pletnev, N. V. (1988) Color SuperSpeed Photographing of Pulsed Electric Discharges. Pribory i Tekhnika Eksperimenta (Instruments and Experimental Techniques), 1, 212–215 (in Russian).

26. Goncharenko, G. M. (1963) Installation for Heating Gas by Pulse Currents. Trudy MEI. Elektroenergetika (Proceedings of MEI. Electric Power Engineering), 45, 7–169 (in Russian).

27. Gavrilov, V. N., & Litvinov, E. A. (1993) Particle Production by Electrical Explosion of a Conductor. Journal of Applied Mechanics and Technical Physics, 34 (6), 768–774.

28. Kvartskhava, I. F., Plyutto, A. A., Chernov, A. A., & Bondarenko, V. V. (1956) Electrical Explosion of Metal Wires. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (Journal of Experimental and Theoretical Physics), 30 (1), 42–53 (in Russian).

29. Martynyuk, M. M. (1974) Role of Liquid Metal Evaporation and Boiling in the Process of Electric Explosion of Conductor. Zhurnal Tekhnicheskoi Fiziki (Journal of Technical Physics), 44 (6), 1262–1270 (in Russian).

30. Peregud, B. P., & Abramova, K. B. (1964) Experimental Investigation of the Electrical Explosion. Doklady Akademii Nauk SSSR (Reports of the USSR Academy of Sciences), 157 (4), 837–840 (in Russian); Abramova, K. B., Valitskii, V. P., Vandakurov, Yu. V., Zlatin, N. A., & Peregud, B.P. (1966) Magnetohydrodynamic Instabilities in Electrical Explosion. Doklady Akademii Nauk SSSR (Reports of the USSR Academy of Sciences), 167 (4), 778–781 (in Russian).

31. Protopopov, N. A., & Kul’gavchuk, V. M. (1961) On Mechanism Theory for Inition of Current Pause and Shock Waves in Metal Heating with the Help of Pulses of High Density Electric Current. Zhurnal Tekhnicheskoi Fiziki (Journal of Technical Physics), 31 (5), 557–564 (in Russian).

32. Vlasto's, A. E. (1967) Current Pause in Explodingwire Discharges. Journal of Applied Physics, 38 (13), 4993–4998. doi: 10.1063/1.1709266; Vlasto's, A. E. (1968). Restrike Mechanisms of Exploding Wire Discharges. Journal of Applied Physics, 39 (7), 3081–3087. doi: 10.1063/1.1656736.

33. Aleksandrov, A. F., Zosimov, V. V., Kurdyumov, S. P., Popov Yu. P., Rukhadze, A. A., & Timofeev, I. B. (1971) Dynamics and Radiation of Direct High Current Discharges in air. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (Journal of Experimental and Theoretical Physics), 61 (5), 1841–1855 (in Russian).

34. Aleksandrov, A. F., & Rukhadze, A. A. (1976) Physics of High-Current Electric-Discharge Light Sources. Moscow, Atomizdat. 184 p. (in Russian).

35. Komel’kov, V. S. (1947) Channel Leader Discharge. Reports of the USSR Academy of Sciences [Dokl. Akad. Nauk SSSR], 58 (1), 57 (in Russian).

36. Apollonov, V. V., & Pletnev, N. V. Sposob Neodnorodnogo Vyvoda Energii Svobodnoi Generatsii Vysshikh Poperechnykh Tipov Kolebanii iz Lazera i Lazer (Method for the Inhomogeneous Extraction of the Energy of Free Higher Transverse Lasing Modes from a Laser and a Laser). Patent of the Russian Federation no. 2239921 (in Russian).

37. Sinton, R., Van Herel, R., Enright, W., & Bodger, P. (2011) Generating Extra Long Arcs Using Exploding Wires. Journal of Applied Physics, 110 (9), 093303. doi: 10.1063/1.3660386.


Review

For citations:


Apollonov V.V. CONDUCTIVE CHANNEL FOR ENERGY TRANSMISSION. Science & Technique. 2014;(6):3-16.

Views: 809


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-1031 (Print)
ISSN 2414-0392 (Online)