Preview

PARTIAL TRAINING METHOD FOR HEURISTIC ALGORITHM OF POSSIBLE CLUSTERIZATION UNDER UNKNOWN NUMBER OF CLASSES

Abstract

A method for constructing a subset of labeled objects which is used in a heuristic algorithm of possible  clusterization with partial  training is proposed in the  paper.  The  method  is  based  on  data preprocessing by the heuristic algorithm of possible clusterization using a transitive closure of a fuzzy tolerance. Method efficiency is demonstrated by way of an illustrative example.

About the Author

D. A. Viattchenin
Объединенный институт проблем информатики НАН Беларуси


References

1. Bezdek, J. C. Pattern recognition with fuzzy objective function algorithms / J. C. Bezdek. – New York : Plenum Press, 1981. – 230 p.

2. Krishnapuram, R. A possibilistic approach to clustering / R. Krishnapuram, J. M. Keller // IEEE Transactions on Fuzzy Systems. – 1993. – Vol. 1. – P. 98–110.

3. Pedrycz, W. Algorithms of fuzzy clustering with partial supervision / W. Pedrycz // Pattern Recognition Letters. – 1985. – Vol. 3. – P. 13–20.

4. Abonyi, J. Supervised fuzzy clustering for the identification of fuzzy classifiers / J. Abonyi, F. Szeifert // Pattern Recognition Letters. – 2003. – Vol. 24. – P. 2195–2207.

5. Liu, H. Evolutionary semi-supervised fuzzy clustering / H. Liu, S.T. Huang // Pattern Recognition Letters. – 2003. – Vol. 24. – P. 3105–3113.

6. Viattchenin, D. A. A new heuristic algorithm of fuzzy clustering / D. A. Viattchenin // Control & Cybernetics. – 2004. – Vol. 33. – P. 323–340.

7. Viattchenin, D. A. A direct algorithm of possibilistic clustering with partial supervision / D. A. Viattchenin // Journal of Automation, Mobile Robotics and Intelligent Systems. – 2007. – Vol. 1. – P. 29–38.

8. Viattchenin, D. A. A methodology of fuzzy clustering with partial supervision / D. A. Viattchenin // Systems Science. – 2007. – Vol. 33. – P. 61–71.

9. Viattchenin, D. A. Fuzzy objective function-based technique of partial supervision for a heuristic method of possibilistic clustering / D. A. Viattchenin // Neural Networks and Artificial Intelligence: Proceedings of the Fifth International Conference ICNNAI'2008. – Minsk, 2008. – P. 51–55.

10. Вятченин, Д. А. Прямые алгоритмы нечеткой кластеризации, основанные на операции транзитивного замыкания и их применение к обнаружению аномальных наблюдений / Д. А. Вятченин // Искусственный интеллект. – 2007. – № 3. – С. 205–216.

11. Looney, C. G. Interactive clustering and merging with a new fuzzy expected value / C. G. Looney // Pattern Recognition. – 2002. – Vol. 35. – P. 2413–2423.

12. Walesiak, M. Ugólniona miara odległości w statys-

13. tycznej analizie wielowymiarowej / M. Walesiak. – Wrocław : Wydawnictwo Akademii Ekonomicznej im. Oskara Langego, 2002. – 107 s.


Review

For citations:


Viattchenin D.A. PARTIAL TRAINING METHOD FOR HEURISTIC ALGORITHM OF POSSIBLE CLUSTERIZATION UNDER UNKNOWN NUMBER OF CLASSES. Science & Technique. 2009;(5):67-74. (In Russ.)

Views: 1119


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-1031 (Print)
ISSN 2414-0392 (Online)