Preview

INFLUENCE OF MULTILAYER NANOTUBES ON FRACTURE TOUGHNESS

Abstract

Experimental research results of the stress intensity factor at normal separation, КIC, and cross-section shift, KIIC, respectively, of high-strength concrete are presented. Research on the specific power changing inputs on quasi-static destruction is carried out.

The compact structure on the basis of the Portland cement modified with carbon nanodispersed systems has been studied. Carbon nanotubes Graphistrength by «Arkema» dispersed into the hydrodynamic plant in the solution of surface-active agent (SAA) Polyplast SP-1 are used as modifying additives. An increase of the cross-breaking strength of a fine grain concrete up to 45,1 % and of the compressing strength up to 96,8 % was observed. The increase of concrete strength is related to morphological changes of new crystalline hydrate formations providing a less defective structure of cement matrix with high density.

 

About the Authors

B. M. Khroustalev
Belarusian National Technical University
Belarus


S. N. Leonovich
Belarusian National Technical University
Belarus


J. Eberhardsteiner
Vienna University оf Technology
Austria
Institute for Mechanics of Materials and Structures


G. I. Yakovlev
Izhevsk State Technical University, Izhevsk, Russia
Russian Federation


G. N. Pervushin
Izhevsk State Technical University, Izhevsk, Russia
Russian Federation


References

1. Staroverov, V. D. Structure and properties of nanomodified cement brick. Author’s abstract. Act. PhD in Technical Science. SPb., 2009. – Р. 19.

2. Production of carbon metal containing nanostructures for constructions modification / A. M. Lipanov [et al.] // Alternative energetic and ecology. – 2008. – No. 8 (64). – P. 82–85.

3. Nanobewehrung von Schaumbeton. In: Beton- und Stahlbetonbau / G. Yakovlev [et al.]. – 2007. – Vol. 102, Is. 2. – P. 120–124.

4. Aeroconcrete on the basis of fluoranhydrite modified carbon nanotubes / G. I. Yakovlev [et al.] // Construction materials. – 2008. – No. 3. – P. 70–72.

5. Modification of porous cement matrixes with carbon nanotubes / G. I. Yakovlev [et al.] // Construction materials. – 2009. – No. 3. – P. 99–102.

6. Konsta-Gdoutos, M. S. Highly Dispersed Carbon Nanotube Reinforced Cement Based Materials / M. S. Konsta-Gdoutos, Z. S. Metaxa, S. P. Shah // Cement and Concrete Research. – 2010. – Vol. 40 (7). – P. 1052–1059.

7. Li, G. Y. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes / G. Y. Li, P. M. Wang, X. Zhao // Carbon. – 2005. – Vol. 43. – P. 1239–1245.

8. Structuring of anhydrite matrices with nanodisperse modifying additive / I. S. Maeva [et al.] // Construction materials. –2009. – No. 6. – P. 4–5.

9. Nanoscale Modification of Cementitious Materials / S. P. Shah // Proceedings of the Third International Symposium on Nanotechnology on construction. – Springer, 2009. – P. 125–130.

10. Konsta-Gdoutos, M. S. Nanoimaging of highly dispersed carbon nanotube reinforced cement based materials / M. S. Konsta-Gdoutos, Z. S. Metaxa, S. P. Shah // Seventh International RILEM Symposium on Fibre Reinforced Concrete: Design and Applications. – Chennai, India, 2008. – P. 125–131.

11. Makar, J. M. Carbon nanotubes and their applications in the construction industry / J. M. Makar, J. J. Beaudoin // Proceeding of the 1st International Symposium on Nanotechnology in Construction. – 2004. – Р. 331–341.

12. Li, G. Y. Pressure-sensitive and microstructure of carbon nanotube reinforced cement composites / G. Y. Li, P. M. Wang, X. Zhao // Cement and Concrete Research. – 2007. – Vol. 29 (5). – P. 377–382.

13. Cwirzen, A. Surface decoration of carbon nanotubes and mexhanical properties of cement/carbon nanotube composites / A. Cwirzen, K. Hamermehl-Chirzen, V. Penttala // Adv. Cem. Res. – 2008. – Vol. 20. – P. 65–73.

14. Surface – active agents and polymers in full soluteons / K. Holmberg [et al.] // Translation from English. – M.: BINOM. Knowledge laboratory, 2009. – P. 528.

15. Tadros, T. F. Applied surfactants: principles and applications. Weinheim: Wiley-VCH Verlag GmbH & Co / T. F. Tadros. – 2005. – 654 p.

16. Rasaiah, J. C. Statistical mechanics of strongly interacting systems: liquids and solids / J. C. Rasaiah, I. H. Moore; N. D. Spenser, Eds. Encyclopedia of chemical physics and physical chemistry. – vol. 1: fundamentals, Bristol: Institute of Physics, 2001. – Р. 379–476.

17. Bazant, Z. P. Concrete at high temperatures / Z. P. Bazant, M. F. Kaplan // Longman Group, Harlow, England, 1996.

18. Principles and justification, determination methods of fire resistance of structures: ISO/TO 10158:1991 /E/. – M.: NIKI Energy, 1991. – 52 p.

19. Riley, M. A. Assessing fire-damaged concrete / M. A. Riley // Concr. Int.: Desw. and Constr. – 1991. – Vol. 13, № 6. – P. 60–63.

20. Zhukov, V. V. Fire resistance of reinforced-concrete structures / V. V. Zhukov. – Kiev : Builder, 1991. – 218 p.

21. Snezhkov, D. Y. Non-destructive concrete control in monolith building: Monograph / D. Y. Snezhkov, S. N. Leonovich. – Minsk: BNTU, 2006. – 220 p.

22. The Concrete Centre : Concrete and Fire, The Concrete Centre, Surrey, U. K., 2004.


Review

For citations:


Khroustalev B.M., Leonovich S.N., Eberhardsteiner J., Yakovlev G.I., Pervushin G.N. INFLUENCE OF MULTILAYER NANOTUBES ON FRACTURE TOUGHNESS. Science & Technique. 2012;(4):52-57.

Views: 648


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-1031 (Print)
ISSN 2414-0392 (Online)