Installation Error in Determining the Longitudinal Elasticity Modulus of Unidirectional Fiberglass
https://doi.org/10.21122/2227-1031-2025-24-5-373-382
Abstract
The purpose of the work is to estimate the effect of installation error in the form of eccentricity of the working area and grip zone on the measured value of the longitudinal elasticity modulus under tension of rods made of unidirectional fiberglass. The research methodology included the development of a calculation scheme and analysis of the stress-strain state of a statically indeterminate rod subjected to axial tension. The radial displacement of the end of the rod with rigidly clamped edges is equal to the installation eccentricity of the working part relative to the grip zone. Additional axial deformations of the rod are determined by the energy method using the Mohr integral. The effect of the transverse force on the longitudinal deformations of the rod was neglected due to its smallness. An analytical dependence was obtained for determining longitudinal deformations caused by the influence of the bending moment from an eccentrically applied tensile force. The calculation assessment of additional deformations was carried out using the example of rods with a circular cross-section and strips of rectangular cross-section, made of unidirectional fiberglass with deformation properties identical to those of fiberglass reinforcement with a nominal diameter of 6 mm, manufactured in accordance with СТБ [STB – Standards of the Republic of Belarus] 1103–98. It is shown that for rods with a ratio of length l to diameter d or thickness h of at least 30, additional longitudinal deformations of the rod, determining the error in measuring the modulus of longitudinal elasticity, do not exceed 1 % in the entire considered range of axial loads. A more noticeable contribution is observed for short rods (l/d = 20) at a level of tensile axial stresses of 200 MPa and less. The research results can be used in engineering practice and in the educational process in the training of specialists in the construction and chemical engineering profile.
About the Authors
V. G. BarsukovBelarus
Grodno
E. A. Evseeva
Belarus
Address for correspondence:
Evseeva Еlena А. –
Belarusian National Technical University,
65, Nezavisimosty Ave.,
220013, Minsk, Republic of Belarus
Tel.: +375 17 239-93-04
References
1. ACI 440.1R-06. Guide for the Design and Construction of Structural Concrete Reinforced with FRP Bars. Detroit, American Concrete Institute (ACI), 2006. 44 р.
2. CAN/CSA-S806-02 (R2007). Design and Construction of Building Components with Fibre-Reinforced Polymers. Canadian Standards Association, 2012. 206 p.
3. Japan Society of Civil Engineers (JSCE). Recommendation for Design and Construction of Concrete Structures Using Continuous Fiber Reinforcing Materials. Concrete Engineering, Series 23. Tokyo, JSCE, 1997. 199 р.
4. Cui Y., Cheung M. M. S., Noruziaan B., Lee S., Tao J. (2008) Development of Ductile Composite Reinforcement Bars for Concrete Structures. Materials and Structures, 41 (9), 1509–1518. https://doi.org/10.1617/s11527-007-9344-8.
5. CNR-DT 203/2006. Guide for the Design and Construction of Concrete Structures Reinforced with FiberReinforced Polymer Bars. Rome, Italian National Research Council (CNR), 2006. Available at: https://site2.soyka.by/wpcontent/uploads/2025/02/cnr-dt_203_2006.pdf.
6. Jarek B., Kubik A. (2015) Zastosowanie Prętόw Zbrojeniowych z Włόkna Szklanego (GFRP) w Budownictwie. Przegląd Budowlany, (012), 21–26.
7. Dems K., Radaszewska E., Turant J. (2012) Modeling of Fiber-Reinforced Composite Material Subjected to Thermal Load. Journal of Thermal Stresses, 35 (7), 579–595. https://doi.org/10.1080/01495739.2012.674786.
8. Okutan B., Karakuzu R. (2002) The Failure Strength for Pin-Loaded Multi-Directional Fiber-Glass Reinforced Epoxy Laminate. Journal of Composite Materials, 36 (24), 2695–2712. https://doi.org/10.1177/002199802761675502.
9. Aktas A., Karakuzu R. (1999) Failure Analysis of TwoDimensional Carbon-Epoxy Composite Plate Pinned Joint. Mechanics of Advanced Materials and Structures, 6 (4), 347–361. https://doi.org/10.1080/107594199305502.
10. Malvar L. J. (1995) Tensile and Bond Pproperties of GFRP Reinforcing Bars. ACI Materials Journal, 92 (3). https://doi.org/10.14359/1120.
11. Sun Z., Tang Y., Luo Y., Wu G., He X. (2017) Mechanical Properties of Steel-FRP Composite Bars under Tensile and Compressive Loading. International Journal of Polymer Science, 2017, 1–11. https://doi.org/10.1155/2017/5691278.
12. Seo D.-W., Park K.-T., You Y.-J., Lee S.-Y. (2016) Experimental Investigation for Tensile Performance of GFRP-Steel Hybridized Rebar. Advances in Materials Science and Engineering, 2016, 1–12. https://doi.org/10.1155/2016/9401427.
13. Nanni A., Nenninger J. S., Ash K. D., Liu J. (1997). Experimental Bond Behavior of Hybrid Rods for Concrete Reinforcement. Structural Engineering and Mechanics, 5 (4), 339–353. https://doi.org/10.12989/sem.1997.5.4.339
14. You Y.-J., Park Y.-H., Kim H.-Y., Park J.-S. (2007) Hybrid Effect on Tensile Properties of FRP Rods with Various Material Compositions. Composite Structures, 80(1), 117–122. https://doi.org/10.1016/j.compstruct.2006.04.065.
15. Bakis C. E., Nanni A., Terosky J. A., Koehler S. W. (2001) Self-Monitoring, Pseudo-Ductile, Hybrid FRP Reinforcement Rods for Concrete Applications. Composites Science and Technology, 61(6), 815–823. https://doi.org/10.1016/s0266-3538(00)00184-6.
16. Kretsis G. (1987) A review of the Tensile, Compressive, Flexural and shear Properties of Hybrid Fibre-Reinforced Plastics. Composites, 18 (1), 13–23. https://doi.org/10.1016/0010-4361(87)90003-6.
17. Okutan B., Aslan Z., Karakuzu R. (2001) A study of the Effects of various Geometric Parameters on the Failure Strength of Pin-Loaded Woven-Glass-Fiber Reinforced Epoxy Laminate. Composites Science and Technology, 61 (10), 1491–1497. https://doi.org/10.1016/s0266-3538(01)00043-4
18. Ozsoy N., Mimaroğlu A., Ozsoy M., Ozsoy M. I. (2015) Comparison of Mechanical Behaviour of Carbon and Glass Fiber Reinforced Epoxy Composites. Acta Physica Polonica A, 127 (4), 1032–1034. https://doi.org/10.12693/aphyspola.127.1032.
19. Gidzatulin A. R., Khozin V. G., Kuklin A. N., Khusnutdinov A. M. (2014) Features of Testing and the Nature of Destruction of Polymer-Composite Reinforcement. Inzhenerno-Stroitelny Zhurnal = Magazine of Civil Engineering, (3), 40–50 (in Russian).
20. Mattews F. L., Rawlings R. D. (1999) Composite Materials: Engineering and Science. Woodhead Publishing, 1999. 470.
21. Kryzhanovsky V. K., Burlov V. V., Panimatchenko A. D., Kryzhanovskaya Yu. V. (2005) Technical Properties of Polymeric Materials: Training and Reference Manual. Saint Petersburg, Professiya Publ. 248 (in Russian).
22. Vishnyakov L. R., Grudina T. V., Kadyrov V. Kh., Karpinos D. M., Oleinik V. I., Sapozhnikova A. B., Tuchinskii L. I. (1985) Composite Materials: Handbook. Kiev, Naukova Dumka Publ. 592 (in Russian).
23. АСI 440.3R-04. Guide Test Methods for Fiber-Reinforced Polymers (FRPs) for Reinforcing of Strengthening Concrete Structures. Detroit, American Concrete Institute (ACI), 2004. 40.
24. ASTM D 3916. Standard Test Method for Tensile Properties of Pultruded Glass-Fiber-Reinforced Plastic Rod. – West Conshohocken, Pa. ASTM, 1996. 6.
25. Erki, M. A., Rizkalla S. H. (1993) Anchorages for FRP Reinforcement. Concrete International, 15 (6), 54–59.
26. Al-Mayah A., Soudki K., Plumtree A. (2007) Novel Anchor System for CFRP Rod: Finite-Element and Mathematical Models. Journal of Composites for Construction, 11 (5), 469–476. https://doi.org/10.1061/(asce)1090-0268(2007)11:5(469).
27. Carvelli V., Fava G., Pisani M. A. (2009). Anchor System for Tension Testing of Large Diameter GFRP Bars. Journal of Composites for Construction, 13 (5), 344–349. https://doi.org/10.1061/(asce)cc.1943-5614.0000027.
28. Castro P. F., Carino N. J. (1998) Tensile and Nondestructive Testing of FRP Bars. Journal of Composites for Construction, 2 (1), 17–27. https://doi.org/10.1061/(asce)1090-0268(1998)2:1(17).
29. Vasilevich Yu. V., Gorely K. A., Sakhonenko S. V., Ivanov S. N. (2016) The Influence of Chemical Shrinkage of the Binder during Curing on the formation of Residual Stresses in Cylindrical Composite Shells. Teoreticheskaya i Prikladnaya Mekhanika: Mezhdunar. nauch.-tekhn. sb. [Theoretical and Applied Mechanics: International Scientific and Technical Collection]. Minsk: BNTU, Iss. 31, 67–72 (in Russian).
30. Barsukov V. G., Lezhava A. G., Evseeva E. A. (2025) Stresses in Composite Building Reinforcement due to Differences in Poisson's Ratios. Nauka i Tehnika = Science & Technique, 24 (2), 124–133. https://doi.org/10.21122/2227-1031-2025-24-2-124-133 (in Russian).
31. Barsukov V. G., Lezhava A. G. (2024) Tensile Stresses of Composite Reinforcement Istalled Eccentrically in Test Couplings. Izvestiya Vuzov. Stroitelstvo = News of Higher Educational Institutions. Construction, (8), 133–143. https://doi.org/10.32683/0536-1052-2024-788-8-133-143 (in Russian).
32. Barsukov V. G., Lezhava A. G., Evseeva E. A. (2024) Features of the Stress State of Composite Reinforcement during Tensile Tests. Nauka i Tehnika = Science & Technique, 23 (6), 492–499. https://doi.org/10.21122/2227-1031-2024-23-6-492-499 (in Russian).
33. Pisarenko G. S., Yakovlev A. P., Matveyev V. V. (1988) Handbook of Strength of Materials. 2nd Ed. Kiev, Naukova Dumka Publ. 736 (in Russian).
Review
For citations:
Barsukov V.G., Evseeva E.A. Installation Error in Determining the Longitudinal Elasticity Modulus of Unidirectional Fiberglass. Science & Technique. 2025;24(5):373-382. (In Russ.) https://doi.org/10.21122/2227-1031-2025-24-5-373-382




























