On Energy Efficiency Characteristics of Laser Erosion on Oxidic Surfaces of Carbon Steels, Cast Iron and Low-alloy Non-ferrous Alloys During Deoxidizing Cleaning. Part II.
https://doi.org/10.21122/2227-1031-2025-24-4-261-269
Abstract
An analysis of the energy efficiency characteristics was performed for laser erosion cleaning (LC) processes developed last period for the application in metalworking sector for the wide group of carbon steels, cast iron and non-ferrous metal alloys to remove surface oxidic layers. The consideration of some characteristics of the LC-processes (energy consumption, energy criterion Ken1s et al.) gives the opportunity for the evaluation of the effects of different mechanisms of the surface deoxidizing during the pulsed laser cleaning of MeOx-layers. Analysis of LC-processes taking into account the efficiency characteristics was based on the massive of parameters of typical (in the field of LC of oxides) regimes of processing of samp-les of carbon steels with surface oxide layers (including using data from our experiments) with use of various pulsed lasers, as well as some samples of aluminum, copper and titanium alloys and cast iron with surface oxides. Our comparison of estimated values of the parameters for a number of recent LC-variants demonstrates that it can be supposed with a sufficient reliability that for the most typical LC-processing cases (preliminary studied in our experiments with cleaning steel samples from mill scale and also described for LC-processes with removal of oxides from some non-ferrous alloys), the first, i.e. the most energy-consuming (thermal ablation with heating to the melting temperature or even higher) of the cleaning mechanisms is more probable. For this processing group the level of the energy criterion values achieved in our experimental series with the LC of FeOx-scale (Ken1s ≈ 4.4 and corresponding approximate value can, according to our kinetic estimates, be considered close to the threshold level, below which not only the LC thermal ablation will be realized in parallel, but also partially the other two deoxidizing mechanisms (not so high energy consumed ones). At the same time active realization of other, i.e. non-ablative mechanisms is feasible in a rarer group of LC-operating cases (e.g. in the laser removal of TiOx-film from the titanium alloy, and also, possibly, in the regime of alumina removal from aluminium alloy for which the Ken1s level is probably equivalent to the “transition zone” with substantial contribution of both non-ablative mechanisms and thermal ablation).
About the Authors
O. G. DevoinoBelarus
Minsk
A. V. Gorbunov
Belarus
Minsk
D. A. Shpackevitch
Belarus
Minsk
A. S. Lapkovsky
Belarus
Minsk
V. A. Gorbunova
Belarus
Address for correspondence:
Gorbunova Vera A.
Belarusian National Technical University
67, Nezavisimosty Ave.,
220013, Minsk, Republic of Belarus
Tel.: +375 17 293-92-71
ecology@bntu.by
V. A. Koval
Belarus
Minsk
S. A. Kovaleva
Belarus
Minsk
References
1. Deschênes J. M., Fraser A. (2020) Empirical Study of Laser Cleaning of Rust, Paint, and Mill Scale from Steel Surface. Lee J., Wagstaff S., Lambotte G., Allanore A., Tesfaye F. (eds). Materials Processing Fundamentals 2020. The Minerals, Metals & Materials Series. Sprin-ger, Cham, 189–201. https://doi.org/10.1007/978-3-030-36556-1_17.
2. Zhang J., Wang Y., Cheng P., Yao Y. L. (2006) Effectof Pulsing Parameters on Laser Ablative Cleaning of Copper Oxides. Journal of Applied Physics, 99 (6), 064902. https://doi.org/10.1063/1.2175467
3. Seo C., Ahn D., Kim D. (2015) Removal of Oxides from Copper Surface Using Femtosecond and Nanosecond Pulsed Lasers. Applied Surface Science, 349, 361–367. https://doi.org/10.1016/j.apsusc.2015.05.011.
4. Zaheer Ud Din S., Shi C., Zhang Q., Wei Y., Zhang W. (2023) Evaluation of the Laser Cleaning Efficacy of Q235 Steel Using Laser-Induced Breakdown Spectroscopy. Metals, 13 (1), 59. https://doi.org/10.3390/met13010059.
5. Ogbekene Y., Shukla P., Zhang Y., Shen X., Prabhakaran S., Kalainathan S., Gulia K. (2018) Laser Cleaning of Grey Cast Iron Automotive Brake Disc: Rust Removal and Improvement in Surface Integrity. International Journal of Peening Science and Technology, 1 (2), 155–180.
6. Xie X., Huang Q., Long J., Ren Q., Hu W., Liu S. (2020) A New Monitoring Method for Metal Rust Removal States in Pulsed Laser Derusting via Acoustic Emission Techniques. Journal of Materials Processing Technology, 275, 116321. https://doi.org/10.1016/j.jmatprotec.2019.116321.
7. Li Z., Zhang D., Su X., Yang S., Xu J., Ma R., Shan D., Guo B. (2021) Removal Mechanism of Surface Cleaning on TA15 Titanium Alloy Using Nanosecond Pulsed Laser. Optics & Laser Technology, 139, 106998; https://doi.org/10.1016/j.optlastec.2021.106998.
8. Ren Y., Wang L., Ma M., Cheng W., Li B., Lou Y., Li J., Ma X. (2022) Stepwise Removal Process Analysis Based on Layered Corrosion Oxides. Materials, 15 (21), 7559. https://doi.org/10.3390/ma15217559.
9. Ma M., Wang L., Li J., Jia X., Wang X., Ren Y. (2020) Investigation of the Surface Integrity of Q345 Steel After Nd:YAG Laser Cleaning of Oxidized Mining Parts. Coatings, 10 (8), 716. https://doi.org/10.3390/coatings10080716.
10. Sheleg V. K., Shpakevich D. A., Gorbunov A. V., Lapkovskiy A. S., Lutsko N. I. (2024) Study of the Process of Laser Cleaning of Low-Carbon Steel from Corrosion Products. Mashinostroenie: respublikanskii mezhvedomstvennyi sbornik nauchnykh trudov [Mechanical Engineering: Republican Interdepartmental Collection of Scientific Works]. Minsk, BNTU, 114–122 (in Russian).
11. Zhang G., Hua X., Huang Y., Zhang Y., Li F., Shen C., Cheng J. (2020) Investigation on Mechanism of Oxide Removal and Plasma Behavior during Laser Cleaning on Aluminum Alloy. Applied Surface Science, 506, 144666. https://doi.org/10.1016/j.apsusc.2019.144666.
12. Windmann M., Röttger A., Kügler H., Theisen W. (2016) Removal of Oxides and Brittle Coating Constituents at the Surface of Coated Hot-Forming 22MnB5 Steel for a Laser Welding Process with Aluminum Alloys. Surface and Coatings Technology, 285, 153–160. https://doi.org/10.1016/j.surfcoat.2015.11.037.
13. Wang X., Xu M., Wang Z., Shen L., Qiu M., Tian Z., Ahsan M., Wang C. (2019) Properties of Jet-Plated Ni Coating on Ti Alloy (Ti6Al4V) with Laser Cleaning Pretreatment. Metals, 9 (2), 248. https://doi.org/10.3390/met9020248.
14. Grigor'eva I. A., Parfenov V. A., Prokuratov D. S., Shakhmin A. L. (2017) Laser Cleaning of Copper in Air and Nitrogen Atmospheres (in Russian). Journal of Optical Technology, 84 (1), 1–4. https://doi.org/10.1364/JOT.84.000001.
15. Napadlek W. (2009) Ablative Laser Cleaning of Materials. Journal of KONES Powertrain and Transport, 16 (1), 357–366.
16. Hino M., Mitooka Y., Murakami K., Nishimoto K., Kanadani T. (2011) Application of Laser Removal Processing on Magnesium Alloy Anodized from Phosphate Solution. Materials Transactions, 52 (6), 1116–1122. https://doi.org/10.2320/matertrans.mc201005.
17. Kumar A., Bhatt R. B., Behere P. G., Afzal M., Kumar A., Nilaya J. P., Biswas D. J. (2014) Laser-Assisted Surface Cleaning of Metallic Components. Pramana, 82 (2), 237–242. https://doi.org/10.1007/s12043-013-0665-6.
18. Kumar A., Sonar V. R., Das D. K., Bhatt R. B., Behere P. G., Afzal M., Kumar A., Nilaya J. P. (2014) Laser Cleaning of Tungsten Ribbon. Applied Surface Scien ce, 308, 216–220. https://doi.org/10.1016/j.apsusc.2014.04.138.
19. Prokuratov D., Samokhvalov A., Pankin D., Vereshchagin O., Kurganov N., Povolotckaia A., Shimko A., Mikhailova A., Balmashnov R., Reveguk A. (2023) Investigation towards Laser Cleaning of Corrosion Products from Lead Objects. Heritage, 6 (2), 1293–1307. https://doi.org/10.3390/heritage6020071.
20. Schubert S., Barday R., Kamps T., Quast T., Sievert F., Varkhalov A., Nietubyc R., Smedley J., Weinberg G. (2012) Investigation on Laser-Cleaning Process on Lead Photocathodes. Proceedings of IPAC2012. New Orleans, LA, USA, 1515–1517. Available at: https://accelconf.web.cern.ch/IPAC2012/papers/tuppd050.pdf.
21. Palomar T., Oujja M., Llorente I., Ramírez Barat B., C ñamares M.V., Cano E., Castillejo M. (2016) Evaluation of Laser Cleaning for the Restoration of Tarnished Silver Artifacts. Applied Surface Science, 387, 118–127. https://doi.org/10.1016/j.apsusc.2016.06.017.
22. Devoino O. G., Gorbunov A. V., Shpackevitch D. A., Lapkovsky A. S., Gorbunova V. A., Koval V. A., Kovaleva S. A. (2025) On Energy Efficiency Characteristics of Laser Erosion on Oxidic Surfaces of Carbon Steels, Cast Iron and Low-alloy Non-ferrous Alloys During Deoxidizing Cleaning. Part I. Nauka i Tehnika = Science and Technique, 24 (1), 12–23 (in Russian). https://doi.org/10.21122/2227-1031-2025-24-1-12-23.
23. Suris A. L. (1989) Plasma Chemical Processes and Apparatus, Moscow, Khimiya Publ. 304 (in Russian).
24. Marotta A., Gorbunov A. V., Mosse A. L. (2004) Heat and Mass Transfer During Plasmachemical Synthesis of Doped Lanthanum Chromite Powders for High-Tem perature Semiconducting Materials. Heat Transfer Research, 35 (5-6), 427–430. https://doi.org/10.1615/HeatTransRes.v35.i56.110.
25. Gorbunov A. V., Devoino O. G., Gorbunova V. A., Yatskevitch O. K., Koval V. A. (2021) Thermodynamic Estimation of the Parameters for C-H-O-N-Me-Systems as Operating Fluid Simulants for New Processes of Powder Thermal Spraying and Spheroidizing. Nauka i Tehnika = Science and Technique, 20 (5), 390–398. https://doi.org/10.21122/2227-1031-2021-20-5-390-398.
26. Mourao R., Marquesi A. R., Gorbunov A. V. Petraconi Filho G., Halinouski A. A., Otani C. (2015) Thermoche mical Assessment of Gasification Process Efficiency of Biofuels Industry Waste with Different Plasma Oxidants. IEEE Transactions on Plasma Science, 43 (10), 3760–3767. https://doi.org/10.1109/TPS.2015.2416129.
27. Li Z., Xu J., Zhang D., Shan D., Guo B. (2022) Finite Element Simulation of Temperature Field in Laser Clea-ning of TA15 Titanium Alloy Oxide Film. Scientia Sinica Technologica, 2022, 52 (2), 318–332. https://doi.org/10.1360/SST-2021-0059 (in Chinese).
28. Lammers N. A., Bleeker A. (2007) Laser Shockwave Cleaning of EUV Reticles. Proc. SPIE 6730, Photomask Technology 2007, 67304P. https://doi.org/10.1117/12.746388.
29. Yu H., Li H., Wu X., Yang J. (2020) Dynamic Testing of Nanosecond Laser Pulse Induced Plasma Shock Wave Propulsion for Microsphere. Applied Physics A, 126 (1), 63. https://doi.org/10.1007/s00339-019-3243-z.
30. Carslaw H. S., Jaeger J. C. (1986) Conduction of Heat in Solids. 2nd ed. Oxford University Press. 520.
31. Pinsker V. A. (2006) Unsteady-State Temperature Field in a Semi-Infinite Body Heated by a Disk Surface Heat Source. High Temperature, 44 (1), 129–138. https://doi.org/10.1007/s10740-006-0015-1.
32. Devoino O. G., Gorbunov A. V., Lapkovsky A. S., Lut sko N. I., Shpakevitch D. A., Gorbunova V. A., Ko val V. A. (2024) Data Sets Formation on the Physical Pro perties of Oxide Scale Components for Theoretical Asses sment of Efficiency Parameters of Laser Cleaning of Carbon Steels and Related Processes. Nauka i Tehnika = Science and Technique, 23 (3), 192–203. https://doi.org/21122/2227-1031-2024-23-3-192-203.
33. Liao D., Wang Q., Wang F., Chen H., Ji F., Wen T., Zhou L. (2023) Effect of Nanosecond Pulsed Laser Clea ning Scanning Speed on Cleaning Quality of Oxide Films on TC4 Titanium Alloy Surface. Chinese Journal of Lasers, 50 (4), 0402020. https://doi.org/10.3788/CJL220819 (in Chinese).
Review
For citations:
Devoino O.G., Gorbunov A.V., Shpackevitch D.A., Lapkovsky A.S., Gorbunova V.A., Koval V.A., Kovaleva S.A. On Energy Efficiency Characteristics of Laser Erosion on Oxidic Surfaces of Carbon Steels, Cast Iron and Low-alloy Non-ferrous Alloys During Deoxidizing Cleaning. Part II. Science & Technique. 2025;24(4):261-269. https://doi.org/10.21122/2227-1031-2025-24-4-261-269