Preview

О характеристиках энергоэффективности лазерной эрозии при очистке от оксидов поверхностей углеродистых сталей, чугуна и низколегированных сплавов металлов. Часть 1

https://doi.org/10.21122/2227-1031-2025-24-1-12-23

Аннотация

Проведено сравнение технологических характеристик изучаемых в последние годы и актуальных для металлообрабатывающего производства процессов лазерной эрозионной очистки (ЛО) изделий из ряда углеродистых сталей, чугуна и низколегированных сплавов цветных металлов от оксидных слоев из продуктов газовой или иной коррозии (часто имеющих негомогенную структуру и пористость). Для анализа эффективности различных (по составу слоев) лазерных процессов целесообразно использовать группу параметров, влияющих на энергоэффективность ЛО при деоксидировании поверхности. К этой группе отнесены: а) интегральный по времени энергетический критерий (Ken1s) нагрева до температур плавления и/или испарения слоя или (иногда) расположенной под ним металлической основы (или производный от Ken1s термохимический КПД нагрева), определяемый по энергозатратам; б) мощность (амплитудная  или  иная)  излучения  на  единицу  поверхности  (N0)  или  отношение  N0   к  теплопроводности  слоя, а также в) амплитуда давления фронта ударной волны (УВ) в лазерной плазме вблизи поверхности (Psw-p) или включающий ее безразмерный параметр, равный отношению Psw-p к напряжению сдвига для границы оксидный слой / металлическая основа. Безразмерный критерий Ken1s (или аналогичные ему) в ряде случаев будет удобнее для моделирования и масштабирования процессов ЛО, чем размерные комплексы, например тепловые критерии типа DMF (“difficulty of melting factor”),  апробированные  ранее  в  расчетах  плазменного  напыления  керамических  материалов. В данной группе параметров эффективности применима и такая характеристика, как нормированное (например, по Ken1s) число Пекле, характеризующее скорость движения границы плавления (или испарения) вдоль поверхности при сканировании луча. Рассматриваемые характеристики по предварительным данным позволяют оценить вклад основных механизмов удаления слоев в ходе импульсной ЛО: 1) теплового воздействия (“ablation”) с «медленным» нагреванием до точки плавления оксида (или до его испарения) в термодинамически квазиравновесных режимах; 2) инициирование термоупругих напряжений в кристаллической решетке фаз оксидов при воздействии импульса с высокой удельной мощностью, с образованием за счет этого сетки трещин в оксидной пленке и ее отслаиванием от металлической основы (“spallation”, приближенно характеризуемое достигаемым максимальным напряжением на границе пленка/основа); 3) плазмодинамический механизм действия фронта УВ на поверхность за счет генерации околоповерхностной плазмы с локальной УВ (с амплитудой давления до ≥10 МПа). При оценке процессов ЛО с учетом характеристик эффективности целесообразно использовать массив верифицированных данных, подобранных по теплофизическим свойствам слоев данного типа.

Об авторах

О. Г. Девойно
Белорусский национальный технический университет
Беларусь

Доктор технических наук, профессор

г. Минск

 



А. В. Горбунов
Белорусский национальный технический университет
Беларусь

Кандидат технических наук 

г. Минск



Д. А. Шпакевич
Белорусский национальный технический университет
Беларусь

г. Минск



А. С. Лапковский
Белорусский национальный технический университет
Беларусь

г. Минск



В. А. Горбунова
Белорусский национальный технический университет
Беларусь

Кандидат химических наук, доцент 

Адрес для переписки:
Горбунова Вера Алексеевна –
Белорусский национальный технический университет,
пр-т Независимости, 67,
220013, г. Минск, Республика Беларусь.
Тел.: +375 17 293-92-71
ecology@bntu.by



В. А. Коваль
Белорусский национальный технический университет
Беларусь

Кандидат технических наук, доцент 

г. Минск



С. А. Ковалева
Объединенный институт машиностроения Национальной академии наук Беларуси
Беларусь

Кандидат технических наук

г. Минск



Список литературы

1. Deschênes J. M., Fraser A. (2020) Empirical Study of Laser Cleaning of Rust, Paint, and Mill Scale from Steel Surface. Lee, J., Wagstaff, S., Lambotte, G., Allanore, A., Tesfaye, F. (eds). Materials Processing Fundamentals 2020. The Minerals, Metals & Materials Series. Springer, Cham, 189–201. https://doi.org/10.1007/978-3-030-36556-1_17.

2. Zhang J., Wang Y., Cheng P., Yao Y. L. (2006). Effect of Pulsing Parameters on Laser Ablative Cleaning of Copper Oxides. Journal of Applied Physics, 99 (6), 064902. https://doi.org/10.1063/1.2175467.

3. Seo C., Ahn D., Kim D. (2015) Removal of Oxides From Copper Surface Using Femtosecond and Nanosecond Pulsed Lasers. Applied Surface Science, 349, 361–367. https:// doi.org/10.1016/j.apsusc.2015.05.011.

4. Zaheer Ud Din S., Shi C., Zhang Q., Wei Y., Zhang W. (2023) Evaluation of the Laser Cleaning Efficacy of Q235 Steel Using Laser-Induced Breakdown Spectroscopy. Metals, 13 (1), 59. https://doi.org/10.3390/met13010059.

5. Ogbekene Y., Shukla P., Zhang Y., Shen X., Prabhakaran S., Kalainathan S., Gulia K. (2018) Laser Cleaning of Grey Cast Iron Automotive Brake Disc: Rust Removal and Improvement in Surface Integrity. International Journal of Peening Science and Technology, 1 (2), 155–180. Available at: https://wlv.openrepository.com/bitstream/handle/2436/622861/Author%20Accepted%20Manuscript%20IJPST%20KG.pdf?sequence=3&isAllowed=y.

6. Xie X., Huang Q., Long J., Ren Q., Hu W., Liu S. (2020) A New Monitoring Method for Metal Rust Removal States in Pulsed Laser Derusting Via Acoustic Emission Techniques. Journal of Materials Processing Technology, 275, 116321. https://doi.org/10.1016/j.jmatprotec.2019.116321.

7. Li Z., Zhang D., Su X., Yang S., Xu J., Ma R., Shan D., Guo B. (2021) Removal Mechanism of Surface Cleaning on TA15 Titanium Alloy Using Nanosecond Pulsed Laser. Optics & Laser Technology, 139, 106998. https://doi.org/10.1016/j.optlastec.2021.106998.

8. Ren Y., Wang L., Ma M., Cheng W., Li B., Lou Y., Li J. Ma X. (2022) Stepwise Removal Process Analysis Based on Layered Corrosion Oxides. Materials, 15 (21), 7559. https://doi.org/10.3390/ma15217559.

9. Ma M., Wang L., Li J., Jia X., Wang X., Ren Y. (2020) Investigation of the Surface Integrity of Q345 Steel After Nd:YAG Laser Cleaning of Oxidized Mining Parts. Coatings, 10 (8), 716. https://doi.org/10.3390/coatings10080716.

10. Sheleg V. K., Shpakevich D. A., Gorbunov A. V., Lapkovskiy A. S., Lutsko N. I. (2024) Study of the Process of Laser Cleaning of Low-Carbon Steel From Corrosion Products. Mashinostroenie: Respublikanskii Mezhvedomstvennyi Sbornik Nauchnykh Trudov [Mechanical Engineering: Republican Interdepartmental Collection of Scientific Works]. Minsk, BNTU, 114–122 (in Russian).

11. Zhang G., Hua X., Huang Y., Zhang Y., Li F., Shen C., Cheng J. (2020) Investigation on Mechanism of Oxide Removal and Plasma Behavior During Laser Cleaning on Aluminum Alloy. Applied Surface Science, 506, 144666. https://doi.org/10.1016/j.apsusc.2019.144666.

12. Windmann M., Röttger A., Kügler H., Theisen W. (2016) Removal of Oxides and Brittle Coating Constituents at the Surface of Coated Hot-Forming 22MnB5 Steel for a Laser Welding Process with Aluminum Alloys. Surface and Coatings Technology, 285, 153–160. https://doi.org/10.1016/j.surfcoat.2015.11.037.

13. Wang X., Xu M., Wang Z., Shen L., Qiu M., Tian Z., Ahsan M., Wang C. (2019) Properties of Jet-Plated Ni Coating on Ti Alloy (Ti6Al4V) with Laser Cleaning Pretreatment. Metals, 9 (2), 248. https://doi.org/10.3390/met9020248.

14. Grigor'eva I. A., Parfenov V. A., Prokuratov D. S., Shakhmin A. L. (2017) Laser Cleaning of Copper in Air and Nitrogen Atmospheres. (in Russian). Journal of Optical Technology, 84 (1), 1–4. https://doi.org/10.1364/JOT.84.000001.

15. Napadlek W. (2009) Ablative Laser Cleaning of Materials. Journal of KONES Powertrain and Transport, 16 (1), 357–366.

16. Hino M., Mitooka Y., Murakami K., Nishimoto K., Kanadani T. (2011) Application of Laser Removal Processing on Magnesium Alloy Anodized from Phosphate Solution. Materials Transactions, 52 (6), 1116–1122. https://doi.org/10.2320/matertrans.mc201005.

17. Kumar A., Bhatt R. B., Behere P. G., Afzal M., Kumar A., Nilaya J. P., Biswas D. J. (2014) Laser-Assisted Surface Cleaning of Metallic Components. Pramana, 82 (2), 237–242. https://doi.org/10.1007/s12043-013-0665-6.

18. Kumar A., Sonar V. R., Das D. K., Bhatt R. B., Behere P. G., Afzal M., Kumar A., Nilaya J. P. (2014). Laser Cleaning of Tungsten Ribbon. Applied Surface Science, 308, 216–220. https://doi.org/10.1016/j.apsusc.2014.04.138.

19. Prokuratov D., Samokhvalov A., Pankin D., Vereshchagin O., Kurganov N., Povolotckaia A., Shimko A., Mikhailova A., Balmashnov R., Reveguk A. (2023) Investigation towards Laser Cleaning of Corrosion Products from Lead Objects. Heritage, 6 (2), 1293–1307. https://doi.org/10.3390/heritage6020071.

20. Schubert S., Barday R., Kamps T., Quast T., Sievert F., Varkhalov A., Nietubyc R., Smedley J., Weinberg G. (2012) Investigation on Laser-Cleaning Process on Lead Photocathodes. Proc. of 3rd Int. Conf. on Particle Accelerator, IPAC 2012, New Orleans, LA, USA, Conference Proc. C1205201, 1515–1517. Available at: https://accelconf.web.cern.ch/IPAC2012/papers/tuppd050.pdf.

21. Palomar T., Oujja M., Llorente I., Ramírez Barat B., Cañamares M. V., Cano E., Castillejo M. (2016). Evaluation of Laser Cleaning for the Restoration of Tarnished Silver Artifacts. Applied Surface Science, 387, 118–127. https://doi.org/10.1016/j.apsusc.2016.06.017.

22. Marotta A., Gorbunov A. V., Mosse A. L. (2004) Heat and Mass Transfer During Plasmachemical Synthesis of Doped Lanthanum Chromite Powders for HighTemperature Semiconducting Materials. Heat Transfer Research, 35 (5–6), 427–430. https://doi.org/10.1615/HeatTransRes.v35.i56.110.

23. Gorbunov A. V., Devoino O. G., Gorbunova V. A., Yatskevitch O. K., Koval V. A. (2021) Thermodynamic Estimation of the Parameters for C–H–O–N–Me-Systems as Operating Fluid Simulants for New Processes of Powder Thermal Spraying and Spheroidizing. Nauka i Tehnika = Science & Technique, 20 (5), 390–398. https://doi.org/10.21122/2227-1031-2021-20-5-390-398.

24. Mourao R., Marquesi A. R., Gorbunov A. V., Petraconi Filho G., Halinouski A. A., Otani C. (2015) Thermochemical Assessment of Gasification Process Efficiency of Biofuels Industry Waste with Different Plasma Oxidants. IEEE Transactions on Plasma Science, 43 (10), 3760–3767. https://doi.org/10.1109/TPS.2015.2416129.

25. Fomin V. M., Golyshev A. A., Orishich A. M., Shulyat’ev V. B. (2017) Energy Balance in High-Quality Cutting of Steel by Fiber and CO2 Lasers. Journal of Applied Mechanics and Technical Physics, 58 (2), 371–378. https://doi.org/10.1134/S0021894417020237.

26. McPherson R. (1981) The Relationship Between the Mechanism of Formation, Microstructure and Properties of Plasma-Sprayed Coatings. Thin Solid Films, 83 (3), 297–310. https://doi.org/10.1016/0040-6090(81)90633-7.

27. Pateyron B., Calve N., Pawłowski L. (2013) Influence of Water and Ethanol on Transport Properties of the Jets used in Suspension Plasma Spraying. Surface and Coatings Technology, 220, 257–260. https://doi.org/10.1016/j.surfcoat.2012.10.010.

28. Grimm M., Conze S., Berger L. M., Paczkowski G. (2021) Changes in the Coating Composition Due to APS Process Conditions for Al2O3-Cr2O3-TiO2 Ternary Powder Blends. Journal of Thermal Spray Technology, 30 (1–2), 168–180. https://doi.org/10.1007/s11666-020-01133-3.

29. Kulik A. Ya., Borisov Yu. S., Mnukhin A. S., Nikitin M. D. (1985) Gas Thermal Spraying of Composite Powders. Leningrad, Mashinostroenie Publ. 199 (in Russian).

30. Vorobyev A. Y., Guo C. (2007). Residual Thermal Effects in Laser Ablation of Metals. Journal of Physics: Conference Series, 59, 418–423. https://doi.org/10.1088/1742-6596/59/1/089.

31. National Institute of Standards and Technology (NIST). NIST Chemistry WebBook, SRD 69. Available at: https://webbook.nist.gov/chemistry/form-ser/.

32. Haynes W. M. (ed.) (2016) CRC Handbook of Chemistry and Physics. 97th ed. CRC Press, USA. 2670. https://doi.org/10.1201/9781315380476.

33. Samsonov G. V. (1982). The Oxide Handbook. 2nd ed. IFI/Plenum, Springer, New York. 463.

34. Shackelford J. F., Alexander W. (2001) CRC Materials Science and Engineering Handbook. 3rd ed. CRC Press, Boca Raton, FL, USA. 645. https://doi.org/10.1201/9781420038408.

35. Masdeu F., Carmona C., Horrach G., Muñoz J. (2021) Effect of Iron (III) Oxide Powder on Thermal Conductivity and Diffusivity of Lime Mortar. Materials, 14, 998. https://doi.org/10.3390/ma14040998.

36. Yan Y., Ji L., Bao Y., Jiang Y. (2012). An Experimental and Numerical Study on Laser Percussion Drilling of ThickSection Alumina. Journal of Materials Processing Technology, 212 (6), 1257–1270. https://doi.org/10.1016/j.jmatprotec.2012.01.010.

37. Yan C., Li L., Li D. (2008) Experimental Measurement on the Absorption Coefficients of Al2O3 Ceramics to CO2 Laser Radiation (in Chinese). Hunan Daxue Xuebao / Journal of Hunan University (Natur. Sci.), 35 (1), 41–44.

38. Akiyama T., Ohta H., Takahashi R., Waseda Y., Yagi J. (1992). Measurement and Modeling of Thermal Conductivity for Dense Iron Oxide and Porous Iron Ore Agglomerates in Stepwise Reduction. ISIJ International, 32 (7), 829–837. https://doi.org/10.2355/isijinternational.32.829.

39. Endo R., Yagi T., Ueda M., Susa M. (2014). Thermal Diffusivity Measurement of Oxide Scale Formed on Steel during Hot-rolling Process. ISIJ International, 54 (9), 2084–2088. https://doi.org/10.2355/isijinternational.54.2084.

40. Bergström D., Powell J., Kaplan A. F. H. (2007) The Absorptance of Steels to Nd:YLF and Nd:YAG Laser Light at Room Temperature. Applied Surface Science, 253 (11), 5017–5028. https://doi.org/10.1016/j.apsusc.2006.11.018.

41. Marusak L. A., Messier R., White W. B. (1980). Optical Absorption Spectrum of Hematite, αFe2O3 Near IR to UV. Journal of Physics and Chemistry of Solids, 41 (9), 981–984. https://doi.org/10.1016/0022-3697(80)90105-5.

42. Li M., Akoshima M., Endo R., Ueda M. (2022) Thermal Diffusivity and Conductivity of Fe3O4 Scale Provided by Oxidation of Iron. ISIJ International, 62 (1), 275–277. https://doi.org/10.2355/isijinternational.ISIJINT-2021-326.

43. Schlegel A., Alvarado S. F., Wachter P. (1979) Optical Properties of Magnetite (Fe3O4). Journal of Physics C: Solid State Physics, 12 (6), 1157–1164. https://doi.org/10.1088/0022-3719/12/6/027.

44. Holmes R. D., O'Neill H. S. C., Arculus R. J. (1986). Standard Gibbs Free Energy of Formation for Cu2O, NiO, CoO, and FexO: High Resolution Electrochemical Measurements Using Zirconia Solid Electrolytes from 900–1400 K. Geochimica et Cosmochimica Acta, 50 (11), 2439–2452. https://doi.org/10.1016/0016-7037(86)90027-x.

45. Iron (II) Oxide. CeraWiki. Available at: https://ceramica. fandom.com/wiki/Iron(II)_oxide.

46. Cotton F. A., Wilkinson G., Murillo C. A., Bochmann M. (1999) Advanced Inorganic Chemistry. 6th ed. New York, Wiley-Interscience. 1376.

47. Li M., Endo R., Akoshima M., Susa M. (2017) Temperature Dependence of Thermal Diffusivity and Conductivity of FeO Scale Produced on Iron by Thermal Oxidation. ISIJ International, 57 (12), 2097–2106. https://doi.org/10.2355/isijinternational.ISIJINT-2017-301.

48. Henning T., Mutschke H. (1997) Low-Temperature Infrared Properties of Cosmic Dust Analogues. Astronomy and Astrophysics, 327, 743–754.

49. Li Z., Xu J., Zhang D., Shan D., Guo B. (2022) Finite Element Simulation of Temperature Field in Laser Cleaning of TA15 Titanium Alloy Oxide Film (in Chinese). Scientia Sinica Technologica, 2022, 52 (2), 318–332. https://doi.org/10.1360/SST-2021-0059.

50. Bale C. W., Be´lisle E., Chartrand P., Decterov S. A., Eriksson G., Gheribi A. E., Hack K., Jung I.-H., Kang Y.-B., Melancon J., Pelton A. D., Petersen S., Robelin C., Sangster J., Spencer P., van Ende M.-A. (2016) Factsage Thermochemical Software and Databases, 2010–2016. Calphad, 54, 35–53. https://doi.org/10.1016/j.calphad.2016.05.002

51. Corundum, Aluminum Oxide, Alumina, 99.9%, Al2O3. MatWeb. Available at: https://www.matweb.com/search/datasheet.aspx?MatGUID=c8c56ad547ae4cfabad15977bfb537 f1&ckck=1.

52. Krzhizhanovsky R. E., Stern Z. Y. (1973) Thermophysical Properties of Non-Metallic Materials (Oxides). Leningrad, Energiya Publ., Leningrad Branch. 336 (in Russian).

53. Lidin R. A., Andreeva L. L., Molochko V. A. (2006) Constants of Inorganic Substances. 2nd ed. Moscow, Drofa Publ. 685 (in Russian).

54. Lamoreaux R. H., Hildenbrand D. L., Brewer L. (1987) High-Temperature Vaporization Behavior of Oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Zn, Cd, and Hg. Journal of Physical and Chemical Reference Data. 16 (3), 419–443. https://doi.org/10.1063/1.555799.

55. Li Y., Li J., Dong H., Zhang W., Jin G. (2024). Simulation and Experimental Study on Continuous Wave Fiber Laser Removal of Epoxy Resin Paint Film on the Surface of 6061 Aluminum Alloy. Photonics, 11 (1), 82. https://doi.org/10.3390/photonics11010082.

56. Wang C., Zhao Z., Zhou H., Zeng J., Zhou Z. (2023) Numerical Simulation and Validation of Laser Polishing of Alumina Ceramic Surface. Micromachines, 14 (11), 2012. https://doi.org/10.3390/mi14112012.

57. McQuarrie M. (1954) Thermal Conductivity: VII, Analysis of Variation of Conductivity with Temperature for Al2O3, BeO, and MgO. Journal of the American Ceramic Society, 37 (2), 91–95. https://doi.org/10.1111/j.15512916.1954.tb20106.x.

58. Munro M. (2005). Evaluated Material Properties for a Sintered alpha-Alumina. Journal of the American Ceramic Society, 80 (8), 1919–1928. https://doi.org/10.1111/j.1151-2916.1997.tb03074.x.

59. Yang K., Zhou X., Liu C., Tao S., Ding C. (2013) Sliding Wear Performance of Plasma-Sprayed Al2O3-Cr2O3 Composite Coatings Against Graphite Under Severe Conditions. Journal of Thermal Spray Technology, 22 (7), 1154–1162. https://doi.org/10.1007/s11666-013-9959-y.

60. He Q., Hao Q., Chen G., Poudel B., Wang X., Wang D., Ren Z. (2007) Thermoelectric Property Studies on Bulk TiOx with x from 1 to 2. Applied Physics Letters, 91 (5), 052505. https://doi.org/10.1063/1.2767775.

61. Harada S., Tanaka K., Inui H. (2010) Thermoelectric Properties and Crystallographic Shear Structures in Titanium Oxides of the Magne´li Phases. Journal of Applied Physics, 108 (8), 083703. https://doi.org/10.1063/1.3498801.

62. Sugiyama K., Takéuchi Y. (1991). The Crystal Structure of Rutile as a Function of Temperature up to 1600°C. Zeitschrift Für Kristallographie – Crystalline Materials, 194 (3–4), 305–313. https://doi.org/10.1524/zkri.1991.194.3-4.305.

63. Liao D., Wang Q., Wang F., Chen H., Ji F., Wen T., Zhou L. (2023) Effect of Nanosecond Pulsed Laser Cleaning Scanning Speed on Cleaning Quality of Oxide Films on TC4 Titanium Alloy Surface. Chinese Journal of Lasers, 50 (4), 0402020 (in Chinese). https://doi.org/10.3788/CJL220819.

64. Park J., Kim D., Kim H., Lee J., Chung W. (2021) Thermal Radiative Copper Oxide Layer for Enhancing Heat Dissipation of Metal Surface. Nanomaterials, 11 (11), 2819. https://doi.org/10.3390/nano11112819.

65. Palik E. (ed.) (1991) Handbook of Optical Constants of Solids. Vol. II. Academic Press, San Diego, 1991.

66. Timoshpolsky V. I., Samoilovich Yu. A., Trusova I. A., Khopova O. G. (2001) Calculation Analysis of the Occurrence of “Dark Spots” During Thermal Interaction of Heated Wares with Supporting Devices of Reheating/ Continuous Furnaces. Metallurgiya: Respublikanskii Mezhvedomstvennyi Sbornik Nauchnykh Trudov [Metallurgy: Republican Interdepartmental Collection of Scientific Works]. Minsk, Vysshaya Shkola Publ., Iss. 25, 12–23 (in Russian).

67. Shi D., Zou F., Zhu Z., Sun J. (2014). Modeling the Normal Spectral Emissivity of Red Copper T2 at 800–1,100 K During the Growth of Oxide Layer. Transactions of the Indian Institute of Metals, 68 (4), 601–609. https://doi.org/10.1007/s12666-014-0490-8.

68. Ding C. X., Huang B. T., Lin H. J. (1984) PlasmaSprayed Wear Resistant Ceramic and Cermet Coating Materials. Thin Solid Films, 118 (4), 485–493. https://doi.org/10.1016/0040-6090(84)90277-3.

69. Wang S., Wang Y., Zhang S., Wang L., Chen S., Zheng H., Zhang C., Liu S., Cheng G.J., Liu F. (2021) Nanoscale-Precision Removal of Copper in Integrated Circuits Based on a Hybrid Process of Plasma Oxidation and Femtosecond Laser Ablation. Micromachines, 12 (10), 1188. https://doi.org/10.3390/mi12101188.

70. Teulet P., Girard L., Razafinimanana M., Gleizes A., Bertrand P., Camy-Peyret F., Baillot E., Richard F. (2006) Experimental Study of an Oxygen Plasma Cutting Torch: II. Arc–Material Interaction, Energy Transfer and Anode Attachment. Journal of Physics D: Applied Physics, 39 (8), 1557–1573. https://doi.org/10.1088/0022-3727/39/8/015.

71. Li G., Wang P. (2013) Properties of Steel at Elevated Temperatures. Advanced Analysis and Design for Fire Safety of Steel Structures. Advanced Topics in Science and Technology in China, 37–65. https://doi.org/10.1007/978-3-642-34393-3_3.

72. Okumu H. W. (2022) Cleaning of Metal Surfaces by Laser Irradiation; Mathematical Modeling and Experimental Analysis. Tesis de Maestría en Ciencias (Óptica). Centro de Investigaciones en Óptica, A.C. León, Guanajuato. 91. Available at: https://cio.repositorioinstitucional.mx/ jspui/handle/1002/1243.

73. Kermanpur A., Mahmoudi Sh., Hajipour A. (2008) Numerical Simulation of Metal Flow and Solidification in the Multi-Cavity Casting Moulds of Automotive Components. Journal of Materials Processing Technology, 206 (1–3), 62–68. https://doi.org/10.1016/j.jmatprotec.2007.12.004.

74. Muller M., El-Rabii H., Fabbro R. (2015). Liquid Phase Combustion of Iron in an Oxygen Atmosphere. Journal of Materials Science, 50 (9), 3337–3350. https://doi.org/10.1007/s10853-015-8872-9.

75. Devoino O. G., Gorbunov A. V., Lapkovsky A. S., Lutsko N. I., Shpakevitch D. A., Gorbunova V. A., Koval V. A. (2024) Data Sets Formation on the Physical Properties of Oxide Scale Components for theoretical Assessment of efficiency Parameters of Laser Cleaning of Carbon Steels and Related Processes. Nauka i Tehnika = Science & Technique, 23 (3), 192–203. https://doi.org/10.21122/2227-1031-202423-3-192-203.

76. Lienhard J. H. IV, Lienhard J. H. V. (2019) A Heat Transfer Textbook. 5th ed. Phlogiston Press. 784.

77. Frewin M. R. (1997) Experimental and Theoretical Investigation of Tandem Laser Welding. Doctor of Philosophy Thesis. University of Wollongong, Australia. 179. Avai lable at: https://core.ac.uk/download/pdf/37028176.pdf.

78. Volpp J. (2023). Laser Beam Absorption Measurement at Molten Metal Surfaces. Measurement, 209, 112524. https://doi.org/10.1016/j.measurement.2023.112524.

79. Dausinger F., Shen J. (1993). Energy Coupling Efficiencyin Laser Surface Treatment. ISIJ International, 33 (9), 925–933. https://doi.org/10.2355/isijinternational.33.925.

80. Chen Y., Xie X., Xiao X. (2019). An Evolving Model of Surface Profile Produced by Nanosecond laser Ablation on Aluminum Alloy. JLMN-Journal of Laser Micro Nanoengineering, 14 (2), 152–160. https://doi.org/10.2961/jlmn.2019.02.0007.

81. Chen M. J., Zhang P., Li Q. (2018) Design and Heat Transfer Analysis of a Compound Multi-Layer Insulations for Use in High Temperature Cylinder Thermal Protection Systems. Science China Technological Sciences, 61 (7), 994–1002. https://doi.org/10.1007/s11431-017-9250-x.

82. Yu H., Li H., Wu X., Yang J. (2020). Dynamic Testing of Nanosecond Laser Pulse Induced Plasma Shock Wave Propulsion for Microsphere. Applied Physics A, 126 (1), 63. https://doi.org/10.1007/s00339-019-3243-z.

83. Lammers N. A., Bleeker A. (2007) Laser Shockwave Cleaning of EUV Reticles. Naber R. J., Kawahira H. (ed.). Photomask Technology. Proc. of SPIE, 6730, 67304P. https://doi.org/10.1117/12.746388.

84. Lim H., Jang D., Kim D., Lee J. W., Lee J. M. (2005). Correlation Between Particle Removal and Shock-Wave Dynamics in the Laser Shock Cleaning Process. Journal of Applied Physics, 97 (5), 054903. https://doi.org/10.1063/1.1857056.

85. Campanella B., Legnaioli S., Pagnotta S., Poggialini F., Palleschi V. (2019). Shock Waves in Laser-Induced Plasmas. Atoms, 7 (2), 57. https://doi.org/10.3390/atoms7020057.

86. Kumar A., Prasad M., Bhatt R., Behere P., Afzal M., Kumar A., Nilaya J., Biswas D. (2014) Laser Shock Cleaning of Radioactive Particulates From Glass Surface. Optics and Lasers in Engineering, 57, 114–120. https://doi.org/10.1016/j.optlaseng.2014.01.013.

87. Gu Q., Feng G., Zhou G., Han J., Luo J., Men J., Jiang Y. (2018) Regional Effects and Mechanisms of Nanoparticle Removal From Si Substrate by Laser Plasma Shock Waves. Applied Surface Science, 457, 604–615. https://doi.org/10.1016/j.apsusc.2018.06.234.

88. Fabbro R., Fournier J., Ballard P., Devaux D., Virmont J. (1990) Physical Study of Laser‐Produced Plasma in Confined Geometry. Journal of Applied Physics, 68 (2), 775–784. https://doi.org/10.1063/1.346783.

89. Berthe L., Fabbro R., Peyre P., Bartnicki E. (1999) Wavelength Dependent of Laser Shock-Wave Generation in the Water-Confinement Regime. Journal of Applied Physics, 85 (11), 7552–7555. https://doi.org/10.1063/1.370553.


Рецензия

Для цитирования:


Девойно О.Г., Горбунов А.В., Шпакевич Д.А., Лапковский А.С., Горбунова В.А., Коваль В.А., Ковалева С.А. О характеристиках энергоэффективности лазерной эрозии при очистке от оксидов поверхностей углеродистых сталей, чугуна и низколегированных сплавов металлов. Часть 1. НАУКА и ТЕХНИКА. 2025;24(1):12-23. https://doi.org/10.21122/2227-1031-2025-24-1-12-23

For citation:


Devoino O.G., Gorbunov A.V., Shpackevitch D.A., Lapkovsky A.S., Gorbunova V.A., Koval V.A., Kovaleva S.A. On Energy Efficiency Characteristics of Laser Erosion on Oxidic Surfaces of Carbon Steels, Cast Iron and Low-alloy Non-ferrous Alloys During Deoxidizing Cleaning. Part 1. Science & Technique. 2025;24(1):12-23. (In Russ.) https://doi.org/10.21122/2227-1031-2025-24-1-12-23

Просмотров: 312


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-1031 (Print)
ISSN 2414-0392 (Online)