Анализ и использование микрополосковой антенны на основе метаматериала для беспроводной связи
https://doi.org/10.21122/2227-1031-2024-23-5-370-379
Аннотация
В данной статье предлагается новая микрополосковая антенна на основе метаматериалов, обеспечивающая беспроводную связь. Предлагаемая конструкция состоит из трассы распространения излученной волны, располагающейся сверху, и равномерно распределенной структуры метаматериала в форме расщепленного кольца, которая располагается на земле. Представленная антенна размером 50´38 мм, толщиной 1,6 мм напечатана на FR4-подложке и резонирует на частоте 1,80 ГГц. Антенна данной конструкции была изготовлена, а полученные результаты измерений соответствуют ранее смоделированным. Цель достигается за счет загрузки равномерно распределенных структур метаматериала в форме разрезных колец на заземленную плоскость этой антенны. Результаты экспериментов показывают, что использование конструкции из метаматериала на заземленной плоскости позволило улучшить усиление сигнала с 4,34 до 7,3 дБ, эффективность с 5,94 до 7,8 дБ по сравнению с обычной патч-антенной. Предложенное нововведение в экран антенны позволяет свести обратные потери до –38 дБ, а также улучшить значения коэффициента усиления антенны и коэффициента ее направленности до 7,8 и 7,8 дБ соответственно. Представленная антенна имеет полосу пропускания 45 МГц. Предлагаемая конструкция апробирована с помощью смоделированного поверхностного тока, параметра S, VSWR (коэффициент стоячей волны напряжения), диаграммы направленности антенны. Авторы также исследовали влияние диэлектрической проницаемости подложки, ширины разделения и межэлементного расстояния в структуре метаматериала в форме расщепленного кольца на обратные потери. Предлагаемая направленная антенна предназначена для приложений беспроводных локальных сетей, а также других приложений в Интернете.
Об авторах
С. В. ПандеИндия
Трамбак-роуд, г. Насик; г. Ширпур, (Индия)
Д. П. Патиль
Индия
Адрес для переписки:
Дипак Пандуранг Патиль –
«Дип Амрит», Плот № 46+47/3
Гаджанан Чоук,
Индранагри, Каматваде
Нашик, Индия
Пин код – 422008
E-mail:dipak.patil@siem.org.in
М. К. Санголе
Индия
Трамбак-роуд, г. Насик (Индия)
С. Антонов
Болгария
Студенческий комплекс, София (Болгария)
Список литературы
1. Cao W., Zhang B., Liu A., Yu T., Guo D., Pan X. (2012) MultiFrequency and Dual-Mode Patch Antenna Based on Electromagnetic Band-gap (EBG) Structure. IEEE Transactions on Antennas and Propagation, 60 (12), 6007–6012. https://doi.org/10.1109/tap.2012.2211554.
2. Metamaterials: The Complete Definition, History & Applications, 2016.
3. Liu Y., Hao Y., Li K., Gong S. (2016) Radar Cross Section Reduction of a Microstrip Antenna Based on Polarization Conversion Metamaterial. IEEE Antennas and Wireless Propagation Letters, 15, 80–83. https://doi.org/10. 1109/lawp.2015.2430363.
4. Pandeeswari R., Raghavan S. (2015) Microstrip Antenna with CSRR Loaded Ground Plane for Gain Enhancement. Micro-wave and Optical Technology Letters, 57 (2), 292–296. https://doi.org/10.1002/mop.28835.
5. Hu J. R., Li J. S. (2014) Compact Microstrip Antennas using CSRR Structure Ground Plane. Microwave and Optical Technology Letters, 56, 117–120. https://doi.org/10.1002/mop.28023.
6. Wang N., Zhang C., Zeng Q., Wang N., Xu J. (2013) New Dielectric 1D EBG Structure for the Design of Wide-band Dielectric Resonator Antennas. Process in Electromagnetic Research, 141, 233–248. https://doi.org/10.2528/pier13061207.
7. Dastranj A., Imani A., Naser-Moghaddasi M. (2008) Printed Wide-slot Antenna for Wideband Application. IEEE Transactions on Antennas and Propagation, 56 (10), 3097–3102. https://doi.org/10.1109/tap.2008.929459.
8. Jan J.-Y., Su J.-W. (2005) Bandwidth Enhancement of a Printed Wide-Slot Antenna with a Rotated Slot. IEEE Transactions on Antennas and Propagation, 53 (6), 2111–2114. https://doi.org/10.1109/tap.2005.848518.
9. Chen W.-L., Wang G.-M., Zhang C.-X. (2009) Bandwidth Enhancement of a Microstrip-line Fed Printed Wide-slot Antenna with a Fractal-Shaped Slot. IEEE Transactions on Antennas and Propagation, 57 (7), 2176–2179. https://doi.org/10.1109/tap.2009.2021974.
10. See C. H., Abd-Alhameed R. A., Zhou D., Lee T. H., Excell P. S. (2010). A CrescentShaped Multiband Planar Monopole Antenna for Mobile Wireless Applications. IEEE antennas and wireless propagation letters, 9, 152–155. https://doi.org/10.1109/lawp.2010.2044741.
11. Goswami C., Pal M., Ghatak R., Poddar D. R. (2014) Metamaterial Based Miniaturized Dual Band Antenna. 2nd International Conference on Emerging Technology Trends in Electronics, Communication and Networking, 51, 1–4. https://doi.org/10.1109/et2ecn.2014.7044956.
12. Bhattacharya A. (2014) Modeling & Simulation of Meta material Based Devices for Industrial Applications. Elektronika – Konstrukcje, Technologie, Zastosowania, 1 (10), 68–71. https://doi.org/10.15199/13.2016.10.17.
13. Radavaram S., Pour M. (2019) Wideband Radiation Reconfigurable Microstrip Patch Antenna Loaded with Two Inverted U-Slots. IEEE Transactions on Antennas and Propagation, 67 (3), 1501–1508. https://doi.org/10.1109/ tap.2018.2885433.
14. Rambe A., Suherman S., Erwin E. (2019) Design of Rectangular Microstrip Patch Antenna for 1.8 GHz Applications. Proceedings of the Proceedings of The 2nd International Conference On Advance And Scientific Innovation, ICASI 2019, 18 July, Banda Aceh, Indonesia. https://doi.org/10.4108/eai.18-7-2019.2288555.
15. Islam M. R., Adel A. A. A., Mimi A. W. N., Yasmin M. S., Norun F. A. M. (2017) Design of Dual Band Microstrip Patch Antenna using Metamaterial. IOP Conference Series: Materials Science and Engineering, 260, 012037. https://doi.org/10.1088/1757-899x/260/1/012037.
16. Rop K. V., Konditi D. B. O. (2012) Performance Analysis of a Rectangular Microstrip Patch Antenna on Different Dielectric Substrates. Innovative Systems Design and Engineering, 3 (8), 1–14.
17. Rahimi M., Zarrabi F. B., Ahmadian R., Mansouri Z., Keshtkar A. (2014) Miniaturization of Antenna for Wireless Application with Difference Metamaterial Structures. Progress in Electromagnetics Research, 145, 19–29. https://doi.org/10.2528/pier13120902.
18. Jain S. K., Shrivastava A., Shrivas G. (2015) Miniaturization of Microstrip Patch Antenna using Metamaterial Loaded with SRR. 2015 International Conference on Electromagnetics in Advanced Applications (ICEAA), a 87, 1224–1227. https://doi.org/10.1109/iceaa. 2015. 729 7313.
19. Singh H. P. (2017) Design and Simulation of Rectangular Microstrip Patch Antenna Loaded with Metamaterial Structure. Electrical & Electronic Technology Open Access Journal, 1 (1), 58–62. Available at: https://medcraveonline.com/EETOAJ/EETOAJ-01-00012.pdf
20. Mishra G. P., Mangaraj B. B. (2020). Highly Compact Microstrip Patch Design based on Improved Capacitive Minkowski Fractal Defected Ground Structure. AEU – International Journal of Electronics and Communications, 115, 153049. https://doi.org/10.1016/j.aeue.2019.153049.
21. Yang M., Chen Z. N., Lau P. Y., Qing X., Yin X. (2015). Miniaturized Patch Antenna with Grounded Strips. IEEE Transactions on Antennas and Propagation, 63 (2), 843–848. https://doi.org/10.1109/tap.2014.2382668.
22. Wqrner D. H., Ganguly S. (2003). An Overview of Fractal Antenna Engineering Research. IEEE Antennas and Propagation Magazine, 45 (1), 38–57. https://doi.org/10.1109/map.2003.1189650.
23. Suvarna K., Murty N. R., Vardhan D. V. (2019) A Miniature Rectangular Patch Antenna using Defected Ground Structure for Wlan Applications. Progress In Electromagnetics Research C, 95, 131–140. https://doi.org/10.2528/pierc19061602.
24. Er-rebyiy R., Zbitou J., Latrach M., Tajmouati A., Errkik A., El Abdellaoui L. (2017). A Novel Design of a Miniature Low Cost Planar Antenna for ISM Band Applications. Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems, 99, 1–5. https://doi.org/10.1145/3167486.3167492.
25. Ghaloua A., Zbitou J., El Abdellaoui L., Errkik A., Tajmouati A., Latrach M. (2017). A Miniature Circular Patch Antenna Using Defected Ground Structure for ISM Band Applications. Proceedings of the 2nd International Conference on Computing and Wireless Communication Systems, 4, 1–5. https://doi.org/10.1145/3167486.3167571.
26. Er-rebyiy R., Zbitou J., Latrach M., Tajmouati A., Errkik A., Abdellaoui L. E. (2017). New Miniature Planar Microstrip Antenna Using DGS for ISM Applications. TELKOMNIKA (Telecommunication Computing Electronics and Control), 15 (3), 1149. https://doi.org/10.12928/telkomnika. v15i3.6864.
27. Zhang H., Chen D., Yu Y., Zhao C., Tian G. (2019) A Novel Compact Microstrip Antenna with an Embedded λ/4 Resonator. International Journal of Antennas and Propagation, 2019, 1–7. https://doi.org/10.1155/2019/2431760.
28. Balanis C. A. Antenna Theory & Design. John Wiley & Sons, Inc., 1997.
29. Pozar D. M. (2004) Microwave Engineering. 3rd ed. John Wiley & Sons.
30. Stutzman W. L., Thiele G. A. (1998) Antenna Theory & Design. 2nd ed. John Wiley & Sons, New York.
31. Haupt R. L. (1995) An Introduction to Genetic Algorithms for Electromagnetic. IEEE Antennas and Propagation Magazine, 37 (2), 7–15. https://doi.org/10.1109/74.382334.
32. Hamzidah N. K., Setijadi E. (2015) Design of Microstrip Patch Antenna Based on Complementary Split Ring Resonator Metamaterial for Wi-MAX Application. 2015 International Seminar on Intelligent Technology and Its Applications (ISITIA), 56, 413–418. https://doi.org/10.1109/isitia.2015.7220016.
33. Nutan R. A., Raghavan S. (2013) Split Ring Resonator and Its Evolved Structures over the Past Decade: This paper discusses the nuances of the most celebrated composite particle (split-ring resonator) with which novel artificial structured materials (called metamaterials) are built. 2013 IEEE International Conference ON Emerging Trends in Computing, Communication and Nanotechnology (ICECCN). https://doi. org/10. 1109/ice-ccn.2013.6528575.
34. Sharma S. K., Abdalla M. A., Hu Z. (2018) Miniaturisation of an Electrically Small Metamaterial Inspired Antenna using Additional Conducting Layer. IET Microwaves, Antennas & Propagation, 12 (8), 1444–1449. https://doi.org/10.1049/ietmap.2017.0927.
35. Sharma R., Singh H. (2015) Left Handed Metamaterial Antenna Design for GSM 1.8 GHz Applications. 2015 2nd International Conference on Recent Advances in Engineering & Computational Sciences (RAECS), 2, 1–5. https://doi.org/10.1109/raecs.2015.7453276.
36. Segovia-Vargas D., Herraiz-Martinez F. J., Ugarte-Munoz E., Garcia-Munoz L. E., Gonzalez-Posadas V. (2013) Quad-Frequency Linearly-Polarized and Dual-Frequency Circularly-Polarized Microstrip Patch Antennas with CRLH Loading. Progress In Electromagnetics Research, 133, 91–115. https://doi.org/10.2528/pier12072413.
37. Niu J.-X. (2010). Dual-Band Dual-Mode Patch Antenna based on Resonant-Type Metamaterial Transmission Line. Electronics Letters, 46 (4), 266. https://doi.org/10.1049/el.2010.3142.
Рецензия
Для цитирования:
Панде С.В., Патиль Д.П., Санголе М.К., Антонов С. Анализ и использование микрополосковой антенны на основе метаматериала для беспроводной связи. НАУКА и ТЕХНИКА. 2024;23(5):370-379. https://doi.org/10.21122/2227-1031-2024-23-5-370-379
For citation:
Pande S.V., Patil D.P., Sangole M.K., Antonov S. Analysis and Implementation of Metamaterial-Inspired Microstrip Antenna for Wireless Applications. Science & Technique. 2024;23(5):370-379. https://doi.org/10.21122/2227-1031-2024-23-5-370-379