Preview

Strength Indicators of Fiber Reinforced Concrete with Carbon Nanomaterials

https://doi.org/10.21122/2227-1031-2024-23-3-219-224

Abstract

Concrete composites with low defects, dense and homogeneous, with a high degree of adhesion between the cement matrix and aggregates, as well as a high ratio between static tensile and compressive strengths and plasticity have the best crack resistance characteristics. This ratio increases in the case of the use of fiber-reinforced concrete. Modern research in nanotechnology focuses on the management of matter at the nanoscale level, which makes it possible to create materials with new properties. Due to the high aspect ratio, flexibility, high strength and rigidity, carbon nanotubes (CNTs) exhibit reinforcing properties. Due to their nanoscale features, CNTs interact with a complex network of calcium-silicate-hydrate binder (C – S – H), contribute to a decrease in porosity and compaction of the cement stone structure, increase the shear forces of matrix adhesion in the contact zone. Thus, there are all prerequisites to assert that fiber concrete with a cement matrix modified with carbon nanotubes will have the required high strength characteristics and crack resistance due to multilevel dispersed reinforcement and the efficient operation of fiber in a nanomodified concrete matrix. This article presents the results of testing samples made of cement stone, concrete and fiber concrete with carbon nanotubes. The presence of carbon nanotubes in cement stone contributes to an increase in compressive strength by 11 %, tensile strength during bending by 20 %. The test results of samples made of reinforced fiber concrete modified with nanocarbon materials have shown an increase in tensile strength during bending up to 109 %, tensile strength during splitting up to 82 %, axial tensile strength up to 78 %.

About the Authors

S. N. Leonovich
Belarusian National Technical University
Belarus

Address for correspondence:
Leonovich Sergey N. - 
Belаrusian National Technical University,
65, Nezavisimosty Ave.,
220013, Minsk, Republic of Belarus.
Tel.: +375 17 368-61-56
sleonovich@mail.ru



E. A. Sadovskaya
Belarusian National Technical University
Belarus


References

1. Zaitsev Yu. V., Kovler K. A., Krasnovsky R. O., Krol I. S., Taher M. (1989) Crack Resistance of Concretes with Various Degrees of Heterogeneity of the Structure. Beton i Zhelezobeton = Concrete and Reinforced Concrete, (11), 25–27 (in Russian).

2. Fedyuk R. S., Baranov A. V., Liseitsev Yu. L. Ginevskiy V., Baranov A., Liseitsev Yu. (2019) Increasing the Dynamic Strength of Fiber Concretes. Vestnik Inzhenernoi shkoly DVFU = FEFU: School of Engineering Bulletin, (2), 90–99 (in Russian). https://doi.org/10.24866/2227-6858/2019-2-11.

3. Lam M.N.-T., Le D.-H., Jaritngam S. (2018) Compressive Strength and Durability Properties of Roller-Compacted Concrete Pavement Containing Electric Arc Furnace Slag Aggregate and Fly Ash. Construction and Building Materials, 191, 912–922. https://doi.org/10.1016/j.conbuildmat.2018.10.080.

4. Yener E., Hinislioğlu S. (2011) The Effects of Silica Fume and Fly ash on the Scaling Resistance and Flexural Strength of Pavement Concretes. Road Materials and Pavement Design, 12 (1), 177–194. https://doi.org/10.1080/14680629.2011.9690358.

5. Hassani A., Arjmandi M. (2010) Enhancement of Concrete Properties for Pavement Slabs Using Waste Metal Drillings and Silica Fume. Waste Management & Research, 28 (1), 56–63. https://doi.org/10.1177/0734242X09104143

6. Pranav S., Aggarwal S., Yang E.-H., Sarkar A.K., Singh A.P., Lahoti M. (2020) Alternative Materials for Wearing Course of Concrete Pavements: a Critical Review. Construction and Building Materials, 236, 117609 https://doi.org/10.1016/j.conbuildmat.2019.117609.

7. Zhdanok, S. A., Leonovich S. N., Polonina E. N. (2022) Synergetic Effect of SiO2 Nanoparticles and Carbon Nanotubes on Concrete Properties. Doklady of the National Academy of Sciences of Belarus, 66 (1), 109–112. https://doi.org/10.29235/1561-8323-2022-66-1-109-112 (in Russian).

8. Zhdanok S. A., Polonina E. N., Leonovich S. N., Khroustalev B. M., Koleda E. A. (2019) Physicomechanical Characteristics of Concrete Modified by a Nanostructured-Carbon-Based Plasticizing Admixture. Journal of Engineering Physics and Thermophysics, 92 (1), 12–18. https://doi.org/10.1007/s10891-019-01902-0.

9. Polonina E. N., Leonovich S. N., Khroustalev B. M., Sadovskaya E. A., Budrevich N. A. (2021) Cement-Based Materials Modified with Nanoscale Additives. Nauka i Tehnika = Science & Technique, 20 (3), 189–194. https://doi.org/10.21122/2227-1031-2021-20-3-189-194.

10. Leonovich S. N., Sadovskaya E. A. (2022) Nanofiber Concrete: Multi-Level Reinforcement. Nauka i Tehnika = Science and Technique, 21 (5), 392–396. https://doi.org/10.21122/2227-1031-2022-21-5-392-396.

11. Sadovskaya E. A., Leonovich S. N. (2022) Optimization of Composition of Nanofiber Concrete in Terms of Fracture Toughness by Matrix Modifiсation. Nauka i Tehnika = Science and Technique, 21 (6), 499–503. https://doi.org/10.21122/2227-1031-2022-21-6-499-503(in Russian).

12. Sadovskaya E. A., Polonina E. N., Leonovich S. N., Zhdanok S. A., Potapov V. V. (2022) Fracture Toughness of Nanofiber-Reinforced Concrete on Normal Separation and In-Plane Shear. Journal of Engineering Physics and Thermophysics, 95 (4), 945–952. https://doi.org/10.1007/s10891-022-02551-6.

13. Sadovskaya E. A., Leonovich S. N., Zhdanok S. A., Polonina E. N. (2020) Tensile Strength of Nanofibrous Concrete. Journal of Engineering Physics and Thermophysics, 93 (4), 1015–1019. https://doi.org/10.1007/s10891-020-02202-8.

14. Zhdanok S. A., Polonina E. N., Leonovich S. N., Khroustalev B. M., Koleda E. A. (2018) Strength Enhancement of Concrete with a Plasticizer on the Basis of Nano-Structured Carbon. Stroitel'nye Materialy = Construction Materials, (6), 67–72. https://doi.org/10.31659/0585-430X-2018-760-6-67-72 (in Russian).

15. Khroustalev B. M., Leonovich S. N., Yakovlev G. I., Polianskich I. S., Lahayne O., Eberhardsteiner J., Skripkiunas G., Pudov I. A., Karpova E. A. (2017) Structural Modification of New Formations in Cement Matrix Using Carbon Nanotube Dispersions and Nanosilica. Nauka i Tehnika = Science & Technique, 16 (2), 93–103. https://doi.org/10.21122/2227-1031-2017-16-2-93-103.

16. Zhdanok, S. A., Polonina E. N., Leonovich S. N. (2022) Influence of Polymer Superplasticizers on Various Types of Carbon Nanomaterials. Journal of Engineering Physics and Thermophysics, 95 (1), 163–167. https://doi.org/10.1007/s10891-022-02464-4.

17. Koleda E. A., Leonovich S. N., Zhdanok S. A. (2018) Results of Tensile Tests of nanofibre Concrete With Complex Fiber Reinforcement. Vestnik of Volga State University of Technology. Series «Materials. Constructions. Technologies», (2), 16–23 (in Russian).


Review

For citations:


Leonovich S.N., Sadovskaya E.A. Strength Indicators of Fiber Reinforced Concrete with Carbon Nanomaterials. Science & Technique. 2024;23(3):219-224. https://doi.org/10.21122/2227-1031-2024-23-3-219-224

Views: 260


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-1031 (Print)
ISSN 2414-0392 (Online)