Preview

НАУКА и ТЕХНИКА

Расширенный поиск

Влияние коэффициента сцепления шин с дорогой на потребляемую энергию и динамику аккумуляторных электромобилей

https://doi.org/10.21122/2227-1031-2024-23-2-151-162

Аннотация

В настоящее время в экономически развитых странах электромобили рассматриваются как решение проблемного вопроса по сокращению выбросов парниковых газов от мобильных транспортных средств. Уровень потребляемой энергии электромобилем является решающим фактором, определяющим общую производительность транспортного средства на электрической тяге. В статье анализируется влияние коэффициента сцепления шин с дорогой на потребляемую энергию аккумуляторным электромобилем при эксплуатации в типичных стандартных ездовых циклах. Для оценки потребляемой энергии при движении с различными коэффициентами сцепления шин используется продольная динамическая модель электромобиля, позволяющая учитывать различные режимы вождения («эко», «комфорт», «спорт») и скольжение ведущих колес в контакте с дорожным покрытием. Разработанная модель, построенная на основе субмоделей таких основных компонентов электромобиля, как электрический двигатель и тяговая аккумуляторная батарея, включает субмодели динамики шин и кузова, а также субмодель логики действий водителя с ПИД-регулятором в цепи управления для отслеживания заданных траекторий движения транспортного средства. Для определения внешних рабочих характеристик тягового электродвигателя на различных режимах работы силового агрегата и идентификации ряда других входных параметров для математического моделирования и оценки адекватности имитационной модели была проведена серия экспериментов с легковым электромобилем VinFast Vf e34 на динамометрическом испытательном стенде. Результаты моделирования по максимальному пройденному расстоянию электромобилем на одном заряде батарей сопоставляются с экспериментальными данными завода-производителя при эксплуатации испытуемого автомобиля в стандартном европейском ездовом цикле. Предлагаются сценарии моделирования процессов разгона с различными режимами ускорения для анализа влияния коэффициента сцепления шин с дорогой на динамические характеристики электромобиля и уровень потребляемой энергии. Приводятся результаты компьютерных экспериментов по определению потребляемой электромобилем энергии при движении в различных ездовых циклах с различными коэффициентами сцепления шин с опорной поверхностью дорожного покрытия. Полученные результаты показывают значительное влияние коэффициента сцепления шин на расход потребляемой электромобилем энергии в различных ездовых циклах, особенно на дороге с низким коэффициентом сцепления.

 

Об авторах

Нань Тхань Ле
Ханойский университет науки и технологий
Вьетнам

Аспирант

Ханой



Пхук Хоанг Дам
Ханойский университет науки и технологий
Вьетнам

Адрес для переписки:
Дам Хоанг Пхук –
Ханойский университет науки и технологий,
ул. Дай Ко Вьет, 1,
100000, г. Ханой, Вьетнам
Тел.: +84 932367577
Phuc.damhoang@hust.edu.vn



Тай Минь Хуэ Ле
Ханойский университет науки и технологий; Университет науки и технологий Ханоя
Вьетнам

Аспирант

Ханой



С. В. Харитончик
Белорусский национальный технический университет
Беларусь

Доктор технических наук, профессор

Минск



В. А. Кусяк
Белорусский национальный технический университет
Беларусь

Кандидат технических наук, доцент

Минск



Конг Тхань Нгуен
Университет транспорта и коммуникаций
Вьетнам

Кандидат технических наук, доцент

Ханой



Список литературы

1. Bloomberg New Energy Finance. Electric Vehicle Outlook 2021 Executive Summary Available at: https://bnef.turtl.co/story/evo-2021/page/1?teaser=yes (accessed 05 December 2023).

2. Le V. N., Dam H. P., Duong N. K., Hoang M. H. (2022) An Average Method for Calculating the Vehicle Energy Consumption on Driving Cycles. International Review of Mechanical Engineering (IREME), 16, 610–619. https://doi.org/10.15866/ireme.v16i12.22954.

3. Adrian F., Antoneta I. B., Iulian M., Seddik B. (2012) Energy Management System within Electric Vehicles Using Ultracapacitors: An LQG-Optimal-Control-Based Solution. IFAC Proceedings Volumes, 45 (25), 229–234. https://doi.org/10.3182/20120913-4-IT-4027.00033.

4. Liu K., Wang J., Yamamoto T., Morikawa T. (2018) Exploring the Interactive Effects of Ambient Temperature and Vehicle Auxiliary Loads on Electric Vehicle Energy Consumption. Applied Energy, 227, 324–331. https://doi.org/10.1016/j.apenergy.2017.08.074.

5. Viswanathan V., Palaniswamy L. N., Leelavinodhan P. B. (2019) Optimization Techniques of Battery Packs Using Re-Configurability: A Review. Journal of Energy Storage, 23, 404–415. https://doi.org/10.1016/j.est.2019.03.002.

6. Zhu W. (2022) Optimization Strategies for Real-Time Energy Management of Electric Vehicles Based on LSTM Network Learning. Energy Reports, 8 (8), 1009–1019. https://doi.org/10.1016/j.egyr.2022.10.349.

7. Le V. N., Dam H. P., Nguyen T. H., Kharitonchik S. V., Kusyak V. A. (2023) Research of Regenerative Braking Strategy for Electric Vehicles. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 66 (2), 105–123. https://doi.org/10.21122/1029-7448-2023-66-2-105-123.

8. Andreas B., Wolfgang R. (2017) The influence of Driving Patterns on Energy Consumption in Electric Car Driving and the Role of Regenerative Braking. Transportation Research Procedia, 22, 174–182. https://doi.org/10.1016/j.trpro.2017.03.024.

9. Revathy R., Balaji B., Mohasin A. K. A., Gobinath A. (2023) Supercapacitor and BLDC Motor-Based Regenerative Braking for an Electric Vehicles. 2nd International Conference on Smart Technologies and Systems for Next Generation Computing (ICSTSN). Villupuram, India, 1–5. https://doi.org/10.1109/ICSTSN57873.2023.10151546.

10. Kubaisi R., Gauterin F., Giessler M. (2014) A Method to Analyze Driver Influence on the Energy Consumption and Power Needs of Electric Vehicles. IEEE International Electric Vehicle Conference (IEVC). Florence, Italy, 1–4. https://doi.org/10.1109/IEVC.2014.7056215.

11. Carreón-Sierra S., Salcido A. (2022) Effects of Driving Style on Energy Consumption and CO2 Emissions. Collective Dynamics, 7, 1–34. https://doi.org/10.17815/CD.2022.137.

12. Rodolfo R. (2020) A Study on the Impact of Driver Behavior on the Energy Consumption of Electric Vehicles in a Virtual Traffic Environment: Master’s Thesis in the University of Michigan. Dearborn, USA. 84.

13. Leontiev D. N., Bogomolov V. A., Klymenko V. I., Ryzhyh L. A., Lomaka S. I., Suhomlin A. V., Kuripka A. V., Frolov A. A. (2022) About Braking of Wheeled Vehicle Equipped with Automated Brake Control System. Nauka i Tehnika = Science & Technique, 21 (1), 63–72. https://doi.org/10.21122/2227-1031-2022-21-1-63-72 (in Russian).

14. Leontiev D. N., Nikitchenko I. N., Ryzhyh L. A., Lomaka S. I., Voronkov O. I., Hritsuk I. V., Pylshchyk S. V., Kuripka O. V. (2019) About Application the Tyre-Road Adhesion Determination of a Vehicle Equipped with an Automated System of Brake Proportioning. Nauka i Tehnika = Science & Technique, 18 (5), 401–408. https://doi.org/10.21122/2227-1031-2019-18-5-401-408 (in Russian).

15. Li L., Song J., Li H. Z., Shan D. S., Kong L., Yang C. C. (2009) Comprehensive Prediction Method of Road Friction for Vehicle Dynamics Control. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 223 (8), 987–1002. https://doi.org/10.1243/09544070JAUTO1168.

16. Konstantinos, N. G., Mitrentsis G. (2017) A Computationally Efficient Simulation Model for Estimating Energy Consumption of Electric Vehicles in the Context of Route Planning Applications. Transportation Research Part D: Transport and Environment, 50, 98–118. https://doi.org/10.1016/j.trd.2016.10.014.

17. Le T. N., Dinh B. T., Pham V. S., Le V. T., Nguyen T. D., Nguyen T. L., Nguyen T. D. (2021) Research on Building an Electric Car Model. Sustainable Energy. Student Forum. Hanoi, Viet Nam, 514–520.

18. Vo V. H., Nguyen T. D., Ta T. H. (2021) Modern Automotive Theory. Hanoi, Vietnam Education Publishing House Limited Company. 210.

19. VF e34. Vinfast. Available at: https://shop.vinfastauto.com/vn_en/dat-coc-xe-dien-vfe34.html (accessed 25 August 2023).

20. Department of Energy USA (1997) Determining Electric Motor Load and Efficiency. Available at: https://energy.gov/eere/amo/downloads/determining-electric-motor-load-and-efficiency#:~:text=Most%20electric%20motors%20are%20designed,dramatically%20below%20about%2050%25%20load (accessed 23 August 2023).

21. Vodovozov V., Raud Z., Lehtla T., Rassolkin A., Lillo N. (2014) Comparative Analysis of Electric Drives Met for Vehicle Propulsion. Ninth International Conference on Ecological Vehicles and Renewable Energies (EVER). Monte-Carlo, Monaco, 1–8. https://doi.org/10.1109/EVER.2014.6844125.

22. Ngo P., Gulkov G. I. (2017) Calculation of a Mechanical Characteristic of Electric Traction Motor of Electric Vehicle. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 60 (1), 41–53. https://doi.org/10.21122/1029-7448-2017-60-1-41-53 (in Russian).

23. Ngo P. (2017) Calculation of Inductance of the Interior Permanent Magnet Synchronous Motor. Energetika. Izvestiya Vysshikh Uchebnykh Zavedenii i Energeticheskikh Ob’edinenii SNG = Energetika. Proceedings of CIS Higher Education Institutions and Power Engineering Associations, 60 (2), 133–146. https://doi.org/10.21122/1029-7448-2017-60-2-133-146 (in Russian).

24. AHS MULTIFLEX EASY. AHS Prüftechnik. Available at: https://www.xn--ahs-prftechnik-lsb.de/produkte/rollenbremspruefstaende-pkw/ahs-multiflex-easy/ (accessed 25 August 2023).

25. How Many Kilometers Can the VinFast VF e34 Electric Car Travel on a Full Charge? Vinfast. Available at: https://vinfastauto.com/vn_vi/vf-e34-di-duoc-bao-nhieu-km (accessed 25 August 2023).

26. Ferrarin M., Pedotti A. (2000) The Relationship Between Electrical Stimulus and Joint Torque: a Dynamic Model. IEEE Transactions on Rehabilitation Engineering, 8 (3), 342–352. https://doi.org/10.1109/86.867876.

27. Zhang B., Yang F., Teng L., Ouyang M., Guo K., Li W. (2019) Comparative Analysis of Technical Route and Market Development for Light-Duty PHEV in China and the US. Energies, 12, 3753. https://doi.org/10.3390/en121937539-2019.

28. Mallouh M., Surgenor B. W., Mohammad S., Abdelhafez E., Hamdan A., Mohammad A. H. (2014) Performance Comparison of Different Power Management Control Strategies for a Hybrid Fuel Cell/Battery Vehicle. ASME 2014 12th Biennial Conference on Engineering Systems Design and Analysis, July 25–27, 2014, Vol. 1. 5 p. https://doi.org/10.1115/ESDA2014-20599.

29. IMEE (2019) Standardized Drive Cycles. Available at: https://imee.pl/pub/drive-cycles (accessed 25 August 2023).


Рецензия

Для цитирования:


Ле Н.Т., Дам П.Х., Ле Т.Х., Харитончик С.В., Кусяк В.А., Нгуен К.Т. Влияние коэффициента сцепления шин с дорогой на потребляемую энергию и динамику аккумуляторных электромобилей. НАУКА и ТЕХНИКА. 2024;23(2):151-162. https://doi.org/10.21122/2227-1031-2024-23-2-151-162

For citation:


Le N.T., Dam P.H., Le T.H., Kharytonchyk S.V., Kusyak V.A., Nguyen C.T. The Influence of Road Adhesion Coefficient on Energy Consumption and Dynamics of Battery Electric Vehicles. Science & Technique. 2024;23(2):151-162. https://doi.org/10.21122/2227-1031-2024-23-2-151-162

Просмотров: 154


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-1031 (Print)
ISSN 2414-0392 (Online)