Preview

Задача осесимметричного прессования дискретных металлических материалов

https://doi.org/10.21122/2227-1031-2024-23-1-21-32

Аннотация

В работе приведено аналитически замкнутое решение задачи осесимметричного прессования дискретных металлических материалов методом совместного решения дифференциальных уравнений равновесия и условия пластичности пористого тела с учетом всех без исключения факторов прессования: вида и свойств шихты, условий нагружения, пористости, температуры, трения и др. Целью настоящей работы является разработка основ инженерной теории обработки давлением дискретных материалов на примере решения задачи осесимметричного прессования структурно-неоднородной металлической стружки в подвижной закрытой матрице. В основу построения физико-математической модели процесса положен идеализированный случай однородного уплотнения пористого тела с последующим определением коэффициента бокового давления, соответствующего действительной степени уплотнения на различных этапах нагружения. Полученное уравнение связи компонентов тензора напряжений с пределом текучести и относительной плотностью прессовки представляет собой цилиндрическое условие пластичности Мизеса, которое в пределе при нулевой пористости переходит в условие пластичности компактных металлов. Краевая задача решена для касательных напряжений с учетом величины и направления действия сил контактного трения, которые по своей физической природе не отличаются от сил трения в глубине прессуемого материала. Физико-математиче-ская модель позволяет производить расчеты полей напряжений и плотности тела по координатам очага деформации, а также энергосиловых параметров (давление, усилие, работа деформации) при условии определения трех структурно-реологических характеристик: предела текучести, относительного сжатия и показателя степени деформационного уплотнения. В силу того что задача решена применительно к телам вращения в общем виде и в общей постановке, само решение следует рассматривать как методологическое для любой схемы осесимметричного нагружения.

Об авторах

О. М. Дьяконов
Белорусский национальный технический университет
Беларусь

Доктор технических наук, профессор

Адрес для переписки:
Дьяконов Олег Михайлович -
Белорусский национальный технический университет,
ул. Я. Коласа, 22/2,
220013, г. Минск, Республика Беларусь.
Тел.: + 375 17 293-91-91
deaconco@mail.ru



А. А. Литвинко
Белорусский национальный технический университет
Беларусь

Инженер

Минск



Список литературы

1. Бальшин, М. Ю. Научные основы порошковой металлургии и металлургии волокна / М. Ю. Бальшин. М.: Металлургия, 1972. 336 с.

2. Жданович, Г. М. Сопротивление порошковых материалов / Г. М. Жданович. Минск: БГПА, 1999. 339 с.

3. Залазинский, А. Г. Пластическое деформирование структурно-неоднородных материалов / А. Г. Залазинский. Екатеринбург: УрО РАН, 2000. 495 с.

4. Соколкин, Ю. В. Механика деформирования и разрушения структурно-неоднородных тел / Ю. В. Соколкин, А. А. Ташкинов. М.: Наука, 1984. 115 c.

5. Залазинский, А. Г. Модель пластически сжимаемого материала и ее применение к исследованию процесса прессования пористой заготовки / А. Г. Залазинский, А. П. Поляков // Прикладная механика и техническая физика. 2002. № 3. С. 140–151.

6. Поляков, А. П. Об исследовании иерархической структуры материала с помощью процедуры вейвлетного анализа / А. П. Поляков // Известия вузов. Черная металлургия, 2006. № 7. С. 40–44.

7. Березин, И. М. Определение условий пластического течения некомпактных материалов / И. М. Березин, А. Г. Залазинский // Фундаментальные исследования. 2013. № 8. С. 19–23.

8. Друянов, Б. А. Прикладная теория пластичности пористых тел / Б. А. Друянов. М.: Машиностроение, 1989. 164 с.

9. Грин, Р. Дж. Теория пластичности пористых тел / Р. Дж. Грин // Механика. 1973. № 4. С. 109–120.

10. Григорьев, А. К. Деформация и уплотнение порошковых материалов / А. К. Григорьев, А. И. Рудской. М.: Металлургия, 1992. 192 с.

11. Рудской, А. И. Физико-механический анализ процессов холодной пластической деформации пористых материалов / А. И. Рудской. СПб.: СПбГТУ, 1998. 146 с.

12. Рыбин, Ю. И. Теория уплотнения порошковых материалов. Теория и математическое моделирование процессов обработки давлением уплотняемых материалов / Ю. И. Рыбин. СПб.: Из-во СПбГПУ, 2002. 110 с.

13. Model for compaction of metal powders / Seon-Jun Park [et al.] // International Journal of Mechanical Sciences. 1999. Vol. 41, Nо 2. P. 121–141. https://doi.org/10.1016/S0020-7403(98)00022-8.

14. Литвинко, А. А. Технология горячего брикетирования отходов черных металлов в пресс-формах с подвижной матрицей / А. А. Литвинко // Наука и техника. 2023. Т. 22, № 5. С. 367–375. https://doi.org/10.21122/2227-1031-2023-22-5-367-375.

15. Порошковая металлургия и напыленные покрытия: учеб. / В. Н. Анциферов [и др.]; под ред. С. Б. Митина. М.: Металлургия, 1987. 791 с.


Рецензия

Для цитирования:


Дьяконов О.М., Литвинко А.А. Задача осесимметричного прессования дискретных металлических материалов. НАУКА и ТЕХНИКА. 2024;23(1):21-32. https://doi.org/10.21122/2227-1031-2024-23-1-21-32

For citation:


Dyakonov O.M., Litvinko A.A. Axisymmetric Pressing Problem of Discrete Metal Materials. Science & Technique. 2024;23(1):21-32. (In Russ.) https://doi.org/10.21122/2227-1031-2024-23-1-21-32

Просмотров: 245


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-1031 (Print)
ISSN 2414-0392 (Online)