Preview

Development of Technological Solutions for Sewer Rehabilitation Using Clinker Brick

https://doi.org/10.21122/2227-1031-2021-20-6-499-505

Abstract

The aim of the work is to develop a technology for the restoration of damaged sections of sewer collectors using clinker bricks. A significant part of such collectors in the Ukraine has completely exhausted their depreciation resource. For their construction, concrete and reinforced concrete were used, which are subject to destruction as a result of the influence of many factors and, above all, microbiological corrosion. Therefore, the selection of the optimal repair technology using corrosion-resistant clinker brick is relevant. The paper considers the problems of repair and reconstruction of worn-out collectors. Technical and technological solutions of an open method for their recovery using pneumatic formwork and corrosionresistant clinker brick are presented. The design of the collector lining structure has been carried out using the finite element method. To justify the feasibility of using the proposed technology, two options for restoring a worn-out collector have been considered: the “pipe-in-pipe” method and method developed by the authors using clinker bricks. The second option in terms of the cost of materials is almost four times more economical and more expedient than the first one (where polymer materials are used). The advantage of restoring circular sewer collectors by means of laying clinker bricks lies in the durability and resistance of this material (taking into account the anticorrosive composition of concrete) to the aggressive effects of the sewer environment. It should be noted that the application of the developed restoration technology is the most appropriate in conditions of sparse building or outside the city due to the significant volume of earthworks.

About the Authors

D. F. Goncharenko
Kharkiv National University of Civil Engineering and Architecture
Ukraine

Kharkiv



A. I. Aleinikova
Kharkiv National University of Civil Engineering and Architecture
Ukraine

Address for correspondence: Aleinikova Alevtyna I. Kharkiv National University of Civil Engineering and Architecture, 40, Sumskaya str., 61002, Kharkiv, Ukraine. Tel.: +380 66 291-31-87
alevtynaal222@gmail.com



S. V. Yesakova
Kharkiv National University of Civil Engineering and Architecture
Ukraine

Kharkiv



R. I. Hudilin
Kharkiv National University of Civil Engineering and Architecture
Ukraine

Kharkiv



References

1. Bondarenko D., Bulhakov V., Harmash O., Goncharenko D., Pilihram S. (2018) Kanalizatsiyni Tuneli Kharkova: QUO VADIS?. Kharkov, Raritety Ukrainy Publ. 232 (in Ukrainian).

2. Aleinikova A., Volkov V., Goncharenko D., Zubko H., Starkova O. (2017) Metodolohichni Osnovy Podovzhennia Ekspluatatsiynoho Resursu Pidzemnykh Inzhenernykh Merezh. Kharkov, Raritety Ukrainy Publ. 320 (in Ukrainian).

3. Garmash A., Bondarenko D., Zubko G., Goncharenko D. (2016) On Renovation of the Destroyed Tunnel Sewer Collector in Kharkiv. World Journal of Engineering, 13 (1), 72–76. https://doi.org/10.1108/wje-02-2016-009

4. Sterling R., Alam S., Allouche E., Condit W., Matthews J., Downey D. (2016) Studying the Life-Cycle Performance of Gravity Sewer Rehabilitation Liners in North America. Procedia Engineering, 165, 251–258. https://doi.org/10.1016/j.proeng.2016.11.797

5. Kaushal, V., Young, V. (2017) Microbiologically Induced Concrete Corrosion in Sanitary Sewer Systems. Trenchless Technology and Pipe Conference TX. The University of Texas, Arlington, TX.

6. Kravchenko O., Yamko O. (2015) Current State of Water Supply and Drainage Systems in Ukraine: Problems and Prospects of Their Development. Book of Reports of the International Congress and Engineering Exhibition ”ETEWS-2017”, 86.

7. Vasilyev V., Klementyev Yu, V. Stolbikhin Yu. (2015) Methods of Anticorrosive Protection of Tunnel Collectors and Their Facilities. Vodosnabzhenie i sanitarnaya tekhnika = Water Supply and Sanitary Engineering, (1), 58–66 (in Russian).

8. Mahmoodian M., Alani A. (2017) Effect of Temperature and Acidity of Sulfuric Acid on Concrete. Properties Journal of Materials in Civil Engineering, 29 (10), 1001–1009. https://doi.org/10.1061/(asce)mt.1943-5533.0002002

9. Liebscher, M., Gillar, M., Bosseler B. (2011) Sanierung und Abwässersehächten. Korrespondenz Abwasser und Abfall, 58 (8), 734–742 (in German).

10. Liebscher M., Gillar M., Bosseler B. (2011) Sanierung und Abwässersehächten. Korrespondenz Abwasser und Abfall, 58 (9), 814–824 (in German).

11. Anbari M., Massoud T., Abbas R. (2017) Risk Assessment model to Prioritize Sewer Pipes Inspection in Wastewater Collection Network. Journal of Environmental Management, 190, 91–100. https://doi.org/10.1016/j.jenvman.2016.12.052

12. Aleinikova A. (2016) Method for evaluating the economic efficiency of water Supply Lines Restoration Based on Teleinspection Results. Aktual'nі problemi ekonomіki = Actual Problems of Economics, 8, 224–228.

13. Goncharenko D. (2008) Ekspluataciya, Remont i Vosstanovlenie Setej Vodootvedeniya. Kiev, Konsum Publ. 400 (in Russian).

14. Yukhnevskiy P. I., Dimitriadi N. P. (2019) About Synergistic Effect of Lubricant and Chemical Additives on Obtaining Quality Surface of Concrete Products. Nauka i tehnika = Science & Technique, 18 (4), 303–310 (in Russian). https://doi.org/10.21122/2227-1031-2019-18-4-303-310.

15. Palevoda I. I., Zhamoidzik S. M., Nekhan D. S., Batan D. S. (2019) Study of Physical and Mechanical Properties of Centrifuged Concrete. Nauka i tehnika = Science & Technique, 18 (4), 319–329 (in Russian). https://doi.org/10.21122/2227-1031-2019-18-4-319-329.

16. Gurinenko N. S., Batyanovskiy E. I. (2019) Influence of Polyfunctional Additive on Hardening Process and Properties of Cement Concrete. Nauka i tehnika = Science & Technique, 18 (4), 330–338 (in Russian). https://doi.org/10.21122/2227-1031-2019-18-4-330-338.

17. Goncharenko D., Olejnik D., Bondarenko D. (2014) The selection of design and technology solutions for inspection shafts construction at existing deep-laid water disposal networks. Voda i ekologiya: problemy i resheniya = Water and Ecology, (4), 59–68 (in Russian).

18. Goncharenko D., Olejnik D. (2014) Razrabotka Tekhnologii Vozvedeniya Zashhishhennykh ot Korrozii Shakhtnykh Stvolov na Dejstvuyushhikh Kanalizatsionnykh Kollektorakh Glubokogo Zalozheniya. Naukovii vіsnik budіvnitstva = Scientific Bulletin of Civil Engineering, (2), 52–55 (in Russian).

19. Goncharenko D., Olejnik D., Kajdalov V. (2014) Osobennosti Vozvedeniya Korrozionnostojkikh Shakhtnykh Stvolov Glubokogo Zalozheniya na Dejstvuyushhikh Setyakh Vodootvedeniya. MOTROL – Motoryzacja i Energetyka Rolnictwa, (6), 3–10 (in Russian).

20. Rohem N., Pacheco L. J., Budhe S., Banea M. D., Sampaio E. M., De Barros S. (2016) Development and Qualification of a new Polymeric Matrix Laminated composite for Pipe Repair. Composite Structures, 152, 737–745. https://doi.org/10.1016/j.compstruct.2016.05.091

21. Orlov А. (1991) Zashhita Stroitel'nykh Konstruktsij i Tekhnologicheskogo Oborudovaniya ot Korrozii. Moscow, Stroiizdat Publ. 304 (in Russian).

22. Goncharenko D., Bondarenko D., Zabelin S. (2017) Otsenka Sostoyaniya Kanalizatsionnogo Kollektora Harkovskogo Traktornogo Zavoda, Postroennogo v 1931 godu. Naukovii vіsnik budіvnitstva = Scientific Bulletin of Civil Engineering, 89 (3), 63–66 (in Russian).


Review

For citations:


Goncharenko D.F., Aleinikova A.I., Yesakova S.V., Hudilin R.I. Development of Technological Solutions for Sewer Rehabilitation Using Clinker Brick. Science & Technique. 2021;20(6):499-505. https://doi.org/10.21122/2227-1031-2021-20-6-499-505

Views: 2572


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-1031 (Print)
ISSN 2414-0392 (Online)