Thermodynamic Estimation of the Parameters for the C–H–O–N–Me-Systems as Operating Fluid Simulants for New Processes of Powder Thermal Spraying and Spheroidizing
https://doi.org/10.21122/2227-1031-2021-20-5-390-398
Abstract
Over the past few years, a group of new processes was developed for high-temperature, including plasma electric arc spraying (at ambient pressure) and spheroidizing of some ceramic and metal powder materials with the use of gaseous hydrocarbons in the heat carriers as well as with feeding of organic additions into a high-temperature jet, in particular, polymeric ones, to control porosity of sprayed metallic functional coatings. The paper considers the possibility to modify such technological processes by introducing solid fuel additions of a polymer type into the operating fluid of an apparatus for gasthermal (plasma or other) treatment, which provides melting of metal or oxide powders. For this, with the help of thermodynamic analysis, the processes have been evaluated at temperatures (300–3000) K for the set of such reacting five component systems as C–H–O–N–Me (at ambient pressure 0.101 MPa) with five variants of Ме – aluminum, titanium, chrome, copper, nickel. This makes it possible to consider these systems as simulants for potential technologies for the treatment of oxide powders (Al2O3, TiO2, Cr2O3) as well as metallic ones (Cu, Ni and their alloys). In order to obtain high exothermic contribution to the heating of powders, the combination “air + polymeric addition (polyethylene) of LDPE grade” was chosen as mixed heat carrier (operating fluid) for the basic version of simulated process. During the analysis of equilibria for the considered multicomponent systems (17 variants), a set of following parameters has been used to characterize the energy intensity of the target powder heating process: the equivalence ratio for reacting mixture and its adiabatic temperature; the energy efficiency of material heating with and without taking into account the effect of fuel addition; specific energy consumption for the powder melting; autothermicity degree of the process during the combined heating (electrothermal heating by the arc of plasma torch and heat flux from the “air + solid fuel additions” mixture) of refractory powders. As a result of the assessment, the preferred (from thermodynamic standpoint) regimes of the considered processes have been found and the possibility to realize an energy-efficient heating of these oxide and metal materials (without oxidation of the latter to CuOx, NiO) with a reduced part of the electric channel of energy transfer, resulted from the carrying out of appreciable effect of the fuel-initiated mechanism of heating in the analyzed C–H–O–N–Mesystems, has been shown in the paper.
Keywords
About the Authors
A. V. GorbunovBrazil
Sao Jose dos Campos
O. G. Devoino
Belarus
Minsk
V. A. Gorbunova
Belarus
Address for correspondence: Gorbunova Vera A. – Belarusian National Technical University, 67, Nezavisimosty Ave., 220013, Minsk, Republic of Belarus. Tel.: +375 17 293-92-71
ecology@bntu.by
O. K. Yatskevitch
Belarus
Minsk
V. A. Koval
Belarus
Minsk
References
1. Yugeswaran S., Amarnath P., Ananthapadmanabhan P.V., Pershin L., Mostaghimi J., Chandra S., Coyle T. W. (2021) Thermal Conductivity and Oxidation Behavior of Porous Inconel 625 Coating Interface Prepared by Dual-Injection Plasma Spraying. Surface and Coating Technology, 411, 126990. https://doi.org/10.1016/j.surfcoat.2021.126990
2. Pershin L., Mitrasinovic A., Mostaghimi J. (2013) Treatment of Refractory Powders by a Novel, High Enthalpy DC Plasma. Journal of Physics D: Applied Physics, 46 (22), 224019. https://doi.org/ 10.1088/0022-3727/46/22/224019
3. Salimijazi H. R., Ghasemi R., Mostaghimi J., Pershin L. (2016) Characterization of YSZ Coatings Deposited by Conventional DC and CO2/CH4 Torches. International Thermal Spray Conference (ITSC 2016) Proceedings, 2, 613-616.
4. Mostaghimi J., Pershin L., Salimijazi H., Nejad M., Ringuette M. (2021) Thermal Spray Copper Alloy Coatings as Potent Biocidal and Virucidal Surfaces. Journal of Thermal Spray Technology, 30 (1-2), 1–15. https://doi.org/10.1007/s11666-021-01161-7
5. Sharifahmadian O., Salimijazi H. R., Fathi M.H., Mostaghimi J., Pershin L. (2013) Relationship between Surface Properties and Antibacterial Behavior of Wire Arc Spray Copper Coatings. Surface and Coating Technology,. 233, 74–79. https://doi.org/10.1016/j. surfcoat.2013.01.060
6. Wrona A., Bilewska K., Lis M., Kamińska M., Olszewski T., Pajzderski P., Więcław G., Jaśkiewicz M., Kamysz W. (2017) Antimicrobial Properties of Protective Coatings Produced by Plasma. Surface and Coating Technology, 318, 332–340. https://doi.org/10.1016/j.surfcoat.2017.01.101
7. Mitrasinovic A., Pershin L., Wen J. Z., Mostaghimi J. (2011) Recovery of Cu and Valuable Metals from E-Waste Using Thermal Plasma Treatment. JOM: the journal of the Minerals, Metals & Materials Society, 63 (8), 24–28. https://doi.org/10.1007/s11837-011-0132-0
8. Borrell A., Carpio P., Salvador M. D., Mataix D. B., Carnicer V., Orts M. J. (2021) Modification of the Properties of Al2O3/TZ-3YS Thermal Barrier Coating by the Addition of Silicon Carbide Particles and Fructose. Coatings, 11 (4), 387. https://doi.org/10.3390/coatings11040387
9. Kornienko E. E., Mul’ D. O., Rubtsova O. A., Vaschenko S. P., Kuzmin V. I., Gulyaev I. P., Sergachev D. V. (2016) Effect of Plasma Spraying Regimes on Structure and Properties of Ni3Al Coatings. Thermophysics and Aeromechanics, 23 (6), 919-928. https://doi.org/10.1134/S0869864316060147
10. Kuzmin V., Gulyaev I., Sergachev D., Vaschenko S., Kornienko E., Tokarev A. (2017) Equipment and Technologies of Air-Plasma Spraying of Functional Coatings. MATEC Web of Conferences, 129, 01052. https://doi.org/10.1051/matecconf/201712901052.
11. Bielyi A. V., Kalinitchenko A. S., Kukareko V. A., Devoino O. G. (2017) Surface engineering of structural materials with using of plasma and beam technologies. Minsk, Belorusskaya nauka Publ. 457 (in Russian).
12. Lee H., Ramachandran C. S., Pala Z., Sampath S. (2018) Optimizing Thermoelectric Properties of In Situ Plasma-Spray-Synthesized Sub-stoichiometric TiO2-x Deposits. Journal of Thermal Spray Technology, 27 (6), 968-982. https://doi.org/10.1007/s11666-018-0731-1
13. Gorokhovski M., Karpenko E. I., Lockwood F. C., Messerle V. E., Trusov B. G., Ustimenko A. B. (2005) Plasma Technologies for Solid Fuels: Experiment and Theory. Journal of the Energy Institute, 78 (4), 157–171. https://doi.org/10.1179/174602205x68261
14. Barbin N. M., Terentiev D. I., Alexeev S. G., Barbina T. M. (2015) Thermodynamic Analysis of Radionuclides Be Behaviour in Products of Vapour Phase Hydrothermal Oxidation of Radioactive Graphite. Journal of Radioanalytical and Nuclear Chemistry, 307 (2), 1459–1470. https://doi.org/10.1007/s10967-015-4587-2
15. Marquesi A. R., Filho G. P., Gorbunov A. V., Halinouski A. A., Essiptchouk A. M., Sismanoglu B. N. (2015) Theoretical Assessment of Plasma Gasification Process of Low Grade Coal and Biomass Feedstock. Advances in Chemistry Research. Vol. 26, Chapter: 4. Nova Science Publishers, 57-76. https://doi.org/10.13140/RG.2.1.2567.4481
16. Carpinlioglu M. O., Sanlisoy A. (2018) Performance Assessment of Plasma Gasification for Waste to Energy Conversion: a Methodology for Thermodynamic Analysis. International Journal of Hydrogen Energy, 43 (25), 11493-11504. https://doi.org/10.1016/j.ijhydene.2017.08.147
17. Mourao R., Marquesi A. R., Gorbunov A. V., Filho G. P., Halinouski A. A., Otani C. (2015) Thermochemical Assessment of Gasification Process Efficiency of Biofuels Industry Waste with Different Plasma Oxidants. IEEE Transactions on Plasma Science, 43 (10), 3760–3767. https://doi.org/10.1109/TPS.2015.2416129
18. Mountouris A., Voutsas E., Tassios D. (2006) Solid Waste Plasma Gasification: Equilibrium Model Development and Exergy Analysis. Energy Conversion and Management, 47 (13–14), 1723–1737. https://doi.org/10.1016/j.enconman.2005.10.015.
19. Bublievsky A.F., Sagas J. C., Gorbunov A. V., Maciel H. S., Bublievsky D. A., Filho G. P., Lacava P. T., Halinouski A. A., Testoni G. E. (2015) Similarity Relations of Power-Voltage Characteristics for Tornado Gliding Arc in Plasma-Assisted Combustion Processes. IEEE Transactions on Plasma Science, 43 (5), 1742–1746. https://doi. org/10.1109/TPS.2015.2419822
20. Matveev I. B., Messerle V. E., Ustimenko A. B. (2009) Plasma Gasification of Coal in Different Oxidants. IEEE Transactions on Plasma Science, 36 (6), 2947–2954. https://doi.org/10.1109/TPS.2008.2007643
21. Engel’sht V. S., Balan R. K. (2011) Chemical Thermodynamics of the Vapor-Oxygen Gasification of Graphite. High Temperature, 49 (5), 736–743. https://doi.org/10.1134/S0018151X11050063.
22. Zhukov M. F., Zasypkin I. M. (2007) Thermal Plasma Torches: Design, Characteristics and Applications. UK, Cambridge: Cambridge International Science Publishing. 596.
23. Oh S. Y., Yun S., Kim J. K. (2018) Process Integration and Design for Maximizing Energy Efficiency of a Coal Fired Power Plant Integrated with Amine-based CO2 Capture Process. Applied Energy, 216, 311–322. https://doi.org/10.1016/j.apenergy.2018.02.100.
24. NIST Chemistry WebBook. Available at: https://webbook.nist.gov/cgi/cbook.cgi?ID=C74828&Units=SI&Mask=1#Thermo-Gas).
25. Zhou T., Francois B. (2009) Modeling and Control Design of Hydrogen Production Process for an Active Hydrogen/Wind Hybrid Power System. International Journal of Hydrogen Energy, 34 (1), 21–30. https://doi.org/10.1016/j.ijhydene.2008.10.030
26. Wastes of manufacturing of polyethylene products. Available at: https://www.wastecation.ru/code/33521000000 (in Russian).
27. Tsiamis D. A., Castaldi M. J. (2016) The Effects of Non-Recycled Plastics (NRP) on Gasification: A Quantitative Assessment. Technical report. Earth Engineering Center, City College, City University of New York, NY. 42.
28. Walters R. N., Hackett S. M., Lyon R. E. (2000) Heats of Combustion of High Temperature Polymers. Fire and Materials, 24 (5), 245-252. https://doi.org/10.1002/1099-1018(200009/10)24:5<245::aid-fam744>3.0.co;2-7
29. Ng S. C., Chee K. K. (1993) Correlation between Heat of Combustion and Chemical Structure of Polymers. Polymer, 34 (18), 3870–3872. https://doi.org/10.1016/0032-3861(93)90513-A.
30. Grikina O. Ye., Stepanov N. F., Tatevskii V. M., Yarovoi S.S. (1971) Calculation of the Enthalpy and Entropy of Polymerization and Copolymerization Constants by the Structural-Element Contribution Method. Polymer Science U.S.S.R, 13 (3), 653–677. https://doi.org/10.1016/0032-3950(71)90031-1
31. Splitsto P. L., Johnson W. H. (1974) The Enthalpies of Combustion and Formation of Linear Polyethylene. Journal of Research of the National Bureau of Standards Section A Physics and Chemistry, 78A (5), 611-616. https://doi.org/10.6028/jres.078A.038
32. Kashiwagi T., Harris R. H., Zhang X., Briber R. M., Cipriano B. H., Raghavan S. R., Awad W. H., Shields J. R. (2004) Flame Retardant Mechanism of Polyamide 6–Clay Nanocomposites. Polymer, 45 (3), 881–891. https://doi.org/10.1016/j.polymer.2003.11.036
33. Ur’yash V. F., Larina V. N., Kokurina N. Yu., Novoselova N. V. (2010) The Thermochemical Characteristics of Cellulose and its Mixtures with Water. Russian Journal of Physical Chemistry, 84 (6), 915–921. https://doi.org/10.1134/S0036024410060051
34. Blokhin A. V., Voitkevich O. V., Kabo G. J., Paulechka U. U., Shishonok M. V., Kabo A. G., Simirsky V. V. (2011) Thermodynamic Properties of Plant Biomass Components. Heat Capacity, Combustion Energy, and Gasification Equilibria of Cellulose. Journal of Chemical Engineering Data, 56, 3523–3531. https://doi.org/10.1021/je200270t
35. Demirbaş A. (2005) Estimating of Structural Composition of Wood and Non-Wood Biomass Samples. Energy Sources, 27 (8), 761–767. https://doi.org/10.1080/00908310490450971.
36. Ioelovich M. (2018) Energy Potential of Natural, Synthetic Polymers and Waste Materials A Review. Academic Journal of Polymer Science, 1 (1), 1–15. https://doi.org/10.19080/AJOP.2018.01.555553
37. Jessup R. S., Prosen E. (1950) Heats of Combustion and Formation of Cellulose and Nitrocellulose (Cellulose Nitrate). Journal of research of the National Bureau of Standards, 44 (4), 387–393. https://doi.org/10.6028/jres.044.034.
38. Zhang Y., Li B., Li H., Liu H. (2011) Thermodynamic Evaluation of Biomass Gasification with Air in Autothermal Gasifiers. Thermochimica Acta, 519 (1-2), 65–71. https://doi.org/10.1016/j.tca.2011.03.005
Review
For citations:
Gorbunov A.V., Devoino O.G., Gorbunova V.A., Yatskevitch O.K., Koval V.A. Thermodynamic Estimation of the Parameters for the C–H–O–N–Me-Systems as Operating Fluid Simulants for New Processes of Powder Thermal Spraying and Spheroidizing. Science & Technique. 2021;20(5):390-398. https://doi.org/10.21122/2227-1031-2021-20-5-390-398