Preview

Cement-Based Materials Modified with Nanoscale Additives

https://doi.org/10.21122/2227-1031-2021-20-3-189-194

Abstract

The most common and reliable material without which modern construction is indispensable is concrete. The development of construction production is pushing for new solutions to improve the quality of concrete mix and concrete. The most demanded and significant indicators of a concrete mixture are the compressive strength and mobility of the concrete mixture. Every year, the volume of research on nanomaterials as modifying components of concrete is significantly increasing, and the results indicate the prospects for their use. Nanoparticles with a large specific surface are distinguished by chemical activity, can accelerate hydration and increase strength characteristics due to nucleation and subsequent formation of C–S–H and compaction of the material microstructure. Sol of nanosilica, which can be used instead of microsilica from industrial enterprises, and carbon nanomaterial have a wide reproduction base. This paper presents studies of these types of nanomaterials and the results of their application in cement concrete. Studies have shown that the effect is also observed with the introduction of an additive containing only one type of nanoparticles. The dependence of the obtained characteristics of cement concretes on the content of these nanomaterials has been established. It has been found that the best results were obtained with an additive in which the above-mentioned nanomaterials were used together. Compressive strength of  heavy concrete samples, improved by the complex nanodispersed system, was 78.7 MPa, which exceeds the strength of the sample containing the CNT additive in a pair with a super-plasticizer by 37 %.  The paper proposes the mechanism for  action of the presented complex additive.

About the Authors

E. N. Polonina
Belarusian National Technical University
Belarus


S. N. Leonovich
Belarusian National Technical University
Belarus
Address for correspondence: Leonovich Sergey N. – Belаrusian National Technical University, 65 Nezavisimosty Ave., 220013, Minsk, Republic of Belarus. Tel.: +375 17 368-61-56    leonovichsn@tut.by 


B. M. Khroustalev
Belarusian National Technical University
Belarus


E. A. Sadovskaya
Belarusian National Technical University
Belarus

Minsk



N. A. Budrevich
Belarusian National Technical University
Belarus

Minsk



References

1. . Shabanova N. A., Sarkisov P. D. (2012) Sol-Gel Technologies. Nanodispersed Silica. Moscow, BINOM Publ. 328 (in Russian).

2. Kondratenko V. S., Kobysh A. N., Petrulyanis N. E., Sorokin A. V., Filimonova E. V. (2006) The Adsorption Properties of SiO2 Micropowders Obtained by the Sol-Gel Method. Mezhdunarodnaya Nauchno-Tekhnicheskaya Kon-ferentsiya “Informatsionnye Tekhnologii v Nauke, Tekhnike i Obrazovanii” [International Scientific and Technical Conference “Information Technologies in Sci-ence, Technology and Education”]. Egypt, 46–48 (in Russian).

3. Shena Y., Zhaoa P., Shao Q. (2014) Porous Silica and Carbon Derived Materials from Rice Husk Pyrolysis Char. Microporous and Mesoporous Materials, 188, 46–76. https://doi.org/10.1016/j.micromeso.2014.01.005.

4. Kuskov N. I., Boguslavskii L. Z., Smal'ko A. A., Zubenko A. A. (2007) Obtaining Nanocarbon by the Method of Electric Dis-charge Treatment of Organic Liquids. Elektronnaya Obrabotka Materialov = Electronic Processing of Materials, (4), 46–52 (in Russian).

5. Sergienko I. G., Znosko K. F., Tarkovsky V. V. (2017) Obtaining Nanosized Particles by the Method of Electric-Discharge De-struction of Materials in Liquid and Study of their Properties. Vesnik Hrodzenskaha Dziarzhaunaha Universiteta imia Ianki Kupaly. Seryia 6. Tekhnika = Vesnik of Yanka Kupala State University of Grodno. Series 6. Engineering Science, 7 (1), 56–65 (in Russian).

6. Kolosov A. D., Nemarov A. A., Nebogin S. A. (2017) Technology of Obtaining and Using Nanosilica in the Production of New Materials for Mechanical Engineering. Sovremennye Tekhnologii. Sistemnyi Analiz. Modelirovanie = Modern Technologies. System Analysis. Modeling, (3), 59–66 (in Russian).

7. Bazhenov Yu. M., Falikman V. R., Bulgakov B. I. (2012) Nanomaterials and Nanotechnologies in Modern Concrete Technology. Vestnik MGSU = Monthly Journal on Construction and Architecture, (12), 125–133 (in Russian).

8. Khroustalev B. M., Leonovich S. N., Yakimovich B. A., Yakovlev G. I., Pervushin G. N., Polyanskikh I. S., Pudov I. A., Khazeev D. R., Shaybadullina A. V., Gordina A. F., Ali El Sayed Mohamed, Keriene Ja. (2014) Dispersion оf Multi-Walled Carbon Nano-tubes in Building Science оf Materials. Nauka i Tekhnika = Science & Technique, (1), 44–52 (in Russian).

9. Singh L. P., Zhu W., Howind T., Sharma U. (2017) Quantification and Characterization of C–S–H in Silica Nanoparticles Incorpo-rated Cementitious System. Cement & Concrete Composites, 79, 106–116. https://doi.org/10.1016/j.cemcon comp.2017.02.004.

10. Constantinides G., Ulm F. J. (2007) The Nanogranular Nature of C–S–H. Journal of the Mechanics and Physics of Solids, 55 (1), 64–90. https://doi.org/10.1016/j.jmps.2006.06.003.

11. Gorkaya D. O., Chulkova I. L. (2018) Modification of the Properties of Cement Stone with an Aqueous Suspension of Technical Carbon. Fundamental’nye i Prikladnye Issledovaniya Molodykh Uchenykh: Sbornik Nauchnykh Trudov II Mezhdunarodnoi Nauch-no-Prakticheskoi Konferentsii Studentov, Aspirantov i Molodykh Uchenykh [Fundamental and Applied Research of Young Scien-tists. Collection of Scientific Papers of the II International Scientific and Practical Conference of Students, Postgraduates and Young Scientists]. Omsk, Siberian State Automobile and Highway University, 423–426 (in Russian).

12. Rassokhin A. S., Ponomarev A. N., Figovsky O. L. (2018) Silica Fumes of Different Types for High-Performance Fine-Grained Concrete. Magazine of Civil Engineering, (2), 151–160.

13. Derevyanko V. M., Grishko G. M., Frost V. Yu. (2018) The Influence of Nanoadditives on the Hydration of Gypsum Binders. Zbіrnik Naukovikh Prats’ Ukraїns’kogo Derzhavnogo Unіversitetu Zalіznichnogo Transportu = Collected Scientific Works of Ukrainian State University of Railway Transport, (178), 88–97 (in Russian).

14. Nizina T. A., Ponomarev A. N., Balykov A. S., Pankin N. A. (2017) Fine-Grained Fiber Concretes Modified by Complexed Nanoadditives. International Journal of Nanotechnology, 14 (7–8), 665–679. https://doi.org/10. 1504/ijnt.2017.083441.

15. Burmistrov I. N., Il'inykh I. A., Mazov I. N., Kuznetsov D. V., Yudintseva T. I., Kuskov K. V. (2013) Physical and Mechanical Properties of Composite Concrete Modified with Carbon Nanotubes. Sovremennye Problemy Nauki i Obrazovaniya = Modern Problems of Science and Education, (5), 80–87 (in Russian).

16. Sheida O. Yu., Batyanovsky E. I. (2015) Production Testing of a New Chemical Additive Containing Carbon Nanomaterial. Sov-remennye Problemy Vnedreniya Evropeiskikh Standartov v Oblasti Stroitel’stva: Sbornik Mezhdunarodnykh Nauchno-Tekhnicheskikh Statei (Materialy Nauchno-Metodicheskoi Konferentsii), 27–28 Maya 2014 g. Ch. 2 [Modern Problems of the Im-plementation of European Standards in the Field of Construction: Materials Scientist. Conf., May 27–28, 2014. Part 2]. Minsk, BNTU, 7–19 (in Russian).

17. Pukharenko Yu. V., Aubakirova I. U., Nikitin V. A., Letenko D. G., Staroverov V. D. (2010) Mixed Nanocarbon Material in Ce-ment Composites. Stroitel'nye Materialy, Oborudovanie, Tekhnologii XXI Veka [Building Materials, Equipment, Technologies of the XXI Century], (10), 16–17 (in Russian).

18. Khroustalev B. M., Leonovich S. N., Yakovlev G. I., Polianskich I. S., Lahayne O., Eberhardsteiner J., Skripkiunas G., Pudov I. A., Karpova E. A. (2017) Structural Modification of New Formations in Cement Matrix Using Carbon Nanotube Dispersions and Na-nosilica. Nauka i Tekhnika = Science and Technique, 16 (2), 93–103. https://doi.org/10.21122/2227-1031-2017-16-2-93-103 (in Russian).

19. Yakovlev G. I., Pervushin G. N., Pudov I. A., Eberkhardshtainer Dzh., Lakhain O., Al’rfai A., Leonovich S. N. (2014) Influence of Multilayer Carbon Nanotubes on the Elastic Modulus and Microhardness of the Cement Matrix. Sovremennye Problemy Stroi-tel’stva i Zhizneobespecheniya: Bezopasnost', Kachestvo, Energo- i Resursosberezhenie: Sbornik Materialov III Vserossiiskoi Nauchno-Prakticheskoi Konferentsii, Yakutsk, 3–4 Marta 2014 g. [Modern Problems of Construction and Life Support: Safety, Quality, Energy and Resource Conservation. Proceedings of the III All-Russian Scientific-Practical. Conf., 3–4 March, 2014], Ya-kutsk, 387–393 (in Russian).

20. Fakhratov, M. A. Girshtel M. A., Evdokimov V. O., Borodin A. S. (2018) Prospects for the Use of Nanostructured Concrete in Construction. Don's Engineering Gazette, 3 (50), 124–132. Available at: https://cyberleninka.ru/article/n/perspektivy-primeneniya-nanostrukturirovannogo-betona-v-stroitelstve (Accessed 12.02.2020).

21. Lkhasaranov S. A., Urkhanova L. A., Buyantuev S. L., Kondratenko A. S., Danzanov A. B., Pshenichnikova L. I. (2012) In-creased Strength Concretes Based on Composite Binders. Stroitel'nyi Kompleks Rossii. Nauka. Obrazovanie. Praktika: Mat. Mezhdunar. Nauch.-Prakt. Konf. [Building Complex of Russia. The Science. Education. Practice: Mat. International Scientific-Practical. Conf.]. Ulan-Ude, East Siberian State University of Technology and Management, 225–228 (in Russian).

22. Urkhanova L. A., Hardaev P. K., Lhasaranov S. A. (2015) Modification of Cement Concretes with Nanodispersed Additives. Stroi-tel’stvo i Rekonstruktsiya = Building and Reconstruction, (3), 167–175 (in Russian).

23. Khroustalev B. M., Yaglov V. V., Kovalev Ya. N., Romaniuk V. N., Burak G. A., Mezhentsev A. A., Gurinenko N. S. (2015) Nanomodified Concrete. Nauka i Tekhnika = Science & Technique, (6), 3–8 (in Russian).

24. Urkhanova L. A., Khardaev P. K., Lhasaranov S. A. (2015) Modification of Cement Concretes with Nanodispersed Additives. Stroitel’stvo i Rekonstruktsiya = Building and Reconstruction, (3), 167–175 (in Russian).

25. Sanchez F., Sobolev K. (2013) Nanotechnology in Concrete Production. Overview. Vestnik Tomskogo Gosudarstvennogo Arkhitekturno-Stroitel’nogo Universiteta = Journal of Construction and Architecture, (3), 262–289 (in Russian).

26. Gorev D. S., Potapov V. V., Goreva T. S. (2014) Obtaining a Sol of Silicon Dioxide by Membrane Concentration of Aqueous Solu-tions. Fundamental'nye Issledovaniya = Fundamental Research, (11), 1233–1239 (in Russian).

27. Potapov V. V., Efmenko Y. V., Gorev D. S. (2019) Determination of the Amount of Ca(OH)2 Bound by Additive Nano-SiO2 in Cement Matrices. Nanotehnologii v Stroitel’stve = Nanotechnologies in Construction, 11 (4), 308–325 (in Russian).

28. Potapov V. V., Gorev D. S. (2018) Physico-Chemical Characteristics of Nanosilica (Sol, Nanopowder-Shock) and Microsilica. Fundamental’nye Issledovaniya = Fundamental Research, (6), 23–29 (in Russian).

29. Zhdanok S. A., Krauklis A. V., Samtsov P. P., Volzhankin V. M. (2006) Installation for the Production of Carbon Nanomaterials. Patent RB No 2839 (in Russian).

30. Zhdanok S. A., Khrustalev B. M., Batyanovsky E. I., Leonovich S. N. (2009) Nanotechnology in Building Materials Science: Reali-ty and Perspectives. Vestnik BNTU [Bulletin of the Belarusian National Technical University], (3), 5–22 (in Russian).

31. Eberhardsteiner J., Zhdanok S., Khrustalev B., Batyanovskii E. I., Leonovich S., Samtsov P. (2012) Investigation of the Effect of Nanosized Additives on the Mechanical Behavior of Cement Blocks. Nauka i Tekhnika = Science & Technique, (1), 52–55 (in Russian).

32. Zhdanok S. A., Solntsev A. P., Krauklis A. V. (2005) A Method for Producing Carbon Nanomaterials. Patent RB No 10010 (in Russian).

33. Eberhardsteiner J., Zhdanok S., Khroustalev B., Batsianouski E., Leonovich S., Samtsou P. (2011) Characterization of the Influence of Carbon Nanomaterials on the Mechanical Behavior of Cement Stone. Journal of Engineering Physics and Thermophysics, 84 (4), 697–704. https://doi.org/10.1007/s10891-011-0531-7.

34. Zhdanok S. A., Potapov V. V., Polonina E. N., Leonovich S. N. (2020) Modification of Cement Concrete with Additives Contain-ing Nano-Sized Materials. Journal of Engineering Physics and Thermophysics, 93 (3), 669–673. https://doi.org/10.1007/s10891-020-02163-y.

35. Zhdanok S. A., Polonina E. N., Leonovich S. N., Khroustalev B. M., Koleda E. A. (2019) Physicomechanical Characteristics of Concrete Modified by a Anostructured-Carbon-Based Plasticizing Admixture. Journal of Engineering Physics and Thermophysics, 92 (1), 12–18. https://doi.org/10.1007/s10891-019-01902-0.

36. Zhdanok S. A., Polonina E. N., Leonovich S. N., Khroustalev B. M., Koleda E. A. (2019) Influence of the Nanostructured-Carbon-Based Plasticizing Admixture in a Self-compacting Concrete Mix on its Technological Properties. Journal of Engineering Physics and Thermophysics, 92 (2), 376–382. https://doi.org/10.1007/s10891-019-01941-7.


Review

For citations:


Polonina E.N., Leonovich S.N., Khroustalev B.M., Sadovskaya E.A., Budrevich N.A. Cement-Based Materials Modified with Nanoscale Additives. Science & Technique. 2021;20(3):189-194. https://doi.org/10.21122/2227-1031-2021-20-3-189-194

Views: 830


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-1031 (Print)
ISSN 2414-0392 (Online)