Preview

Science & Technique

Advanced search

Formation of Plasma Powder Coatings from Cermet with Subsequent High-Energy Modification

https://doi.org/10.21122/2227-1031-2020-19-6-469-474

Abstract

The paper presents research on the effect of technological parameters of high-energy processing on the performance properties of powder coatings made of cermet. The use of pulse-plasma treatment is considered as an example of high-energy modification of coatings. As used powder coating materials, various versions of carbide-containing ceramics with the addition of a solid lubricant in an iron-based metal matrix have been selected in the paper. Coatings of carbide-containing ceramics with the addition of a solid lubricant in an iron-based metal matrix on are being developed to replace those of a nickel-based matrix. Such factors as crack resistance, wear resistance, workability, brittleness, as well as economic components often limit the use of powder materials based on carbide ceramics with the addition of solid lubricant in the matrix based on nickel. When only the wear process determines the service life of a part, such powder materials should be replaced with cheaper powder materials based on carbide ceramics with the addition of solid lubricant in an iron-based matrix. The proposed developments increase the wear resistance of the plasma coating due to the introduction of high-chromium steel and molybdenum into the material. Optimum porosity is formed in the initial powder mixture during the synthesis of FeCrMo–MoS2–TiC composite materials, there is an improvement in the technological parameters of powder materials, their utilization rate in plasma spraying increases, and the technology of applying wear-resistant plasma coatings becomes cheaper. The addition of the Mo element to the FeCr binder increases the wetting of titanium carbides by the binder melt during self-propagating high-temperature synthesis of the developed composite powder. Subsequent layer-by-layer processing of plasma-sprayed coatings from powders of the developed ceramics using repetitive pulses of plasma flows using different energy levels makes it possible to create strictly defined structures with necessary and controlled porosity, which decreases in a certain sequence from the outer treated layers to the base. Such treatment contributes to a significant increase in the wear resistance of the treated friction surfaces, increases the oil holding capacity, in addition, an increased adhesive and cohesive strength of the formed layers bordering the substrate is formed. Processing distances, the total number of impacts have been varied in accordance with the methodological developments, when changing the applied technological characteristics of pulse-plasma effects. The total number of plasma pulses influences on the created thickness of the plasma coating layers after treatment and contributes to the melting  with compaction of the coatings obtained by the plasma treatment and the creation of a structure with hardened characteristics.

 

About the Authors

V. A. Okovity
Belarusian National Technical University
Belarus
Address for correspondence: Okovity Vjacheslav A. – Belarusian National Technical University, 22, Ya. Kolasa str., 220013, Minsk, Republic of Belarus. Tel.: +375 17 293-93-71    niil_svarka@bntu.by


F. I. Panteleenko
Belarusian National Technical University
Belarus
Minsk


V. V. Okovity
Belarusian National Technical University
Belarus
Minsk


V. M. Astashinsky
A. V. Luikov Heat and Mass Transfer Institute of NAS of Belarus
Belarus
Minsk


References

1. Antsiferov V. N., Shmakov A. M., Ageev S. S., Bulanov V. Ya. (1994) Gas-Thermal Coatings. Yekaterinburg, Nauka, Ural Publishing Company. 324 (in Russian).

2. Kudinov V. V., Pekshev P. Yu., Belashchenko V. E., Solonenko O. P., Safiullin V. A. (1990) Plasma Coating. Moscow, Nauka Publ. 244 (in Russian).

3. Kulik A. Ya., Borisov Yu. S., Mnukhin A. S., Niki-tin M. D. (1985) Gas-Thermal Spraying of Composite Powders. Moscow, Mashinostroenie Publ. 261 (in Russian).

4. Panteleenko F. I., Okovity V. A., Devoino O. G., Panteleenko A. F., Okovity V. V. (2012) Creation of Composite Material on Basis of Oxide Ceramics with Inclusion of Solid Lubricant for Gas-Thermal Spraying. Nauka i Tekhnika = Science and Technique, (4), 17–21. https://doi.org/10.21122/2227-1031-2012-0-4-78-82 (in Russian).

5. Panteleenko F. I., Okovity V. A., Talako T. L., Devoino O. G., Panteleenko A. F., Okovity V. V. (2013) Investigation of Plasma Wear Resistance Coating Structure on Basis of Oxide Ceramics with Inclusions of Solid Lubrication. Nauka i Tekhnika = Science and Technique, (6), 15–21 (in Russian).

6. Okovity V. A., Panteleenko F. I., Devoino O. G., Panteleenko A. F., Okovity V. V. (2014) Investigation of Processes on Treatment of Plasma Coatings Made of Materials Based on Multifunctional Oxide Ceramics with Laser Irradiation Impulses. Nauka i Tekhnika = Science and Technique, (4), 3–10 (in Russian).

7. Okovity A. V., Panteleenko F. I., Astashinsky V. M., Okovity V. V. (2017) Influence of Temperature Regime in the Coating-Basis System for Forming Elements of Non-Equilibrium Structures of Plasma Coatings. Progressive Tekhnologies and Systems of Mechanical Engineering: International Collection of Scientific Papers. Donetsk, Donetsk National Technical University, 59 (4), 43–47 (in Russian).

8. Panteleenko F. I., Okovity V. V., Astashinsky V. M. Analysis and Selection of Possible Options for Spraying Composite Multilayer Coatings of Oxide Ceramics Powders on the Model of Elements of Anti-Meteor Protection Screens. Mashinostroenie i Tekhnosfera XXI Veka: Sbornik Trudov XXIV Mezhdunar. Nauch.-Tekhn. Konf. v g. Sevastopole, 11–17 Sent. 2017 g. [Mechanical Engineering and Technosphere of the XXI Century, Proceedings of the XXIV International Scientific and Technical Conference in Sevastopol, Sept. 12–17, 2017]. Donetsk, 185–190 (in Russian).

9. Okovity V. A., Panteleenko F. I., Okovity V. V., Astashinsky V. M., Khramtsov P. P., Chernik M. Yu., Uglov V. V., Shimansky V. I., Cherenda N. N., Sobolev-sky S. B. (2018) Formation and Study of Plasma Spraying Double-Layer Composite Coatings (Viscous Metallic NiCr and Solid ZrO2 Layer). Nauka i Tekhnika = Science and Technique, 17 (1), 21–28. https://doi.org/10.21122/2227-1031-2018-17-1-21-28 (in Russian).

10. Okovity V. A., Panteleenko F. I., Astashinsky V. M., Okovity V. V. (2018) Technological Specific Features on Formation of Plasma Powder Coatings from Ceramics with Non-Equilibrium Structure. Nauka i Tekhnika = Science and Technique, 17 (3), 183–189. https://doi.org/10.21122/2227-1031-2018-17-3-183-189 (in Russian).

11. Okovity V. A., Panteleenko F. I., Okovity V. V., Astashinsky V. M., Uglov V. V., Shimansky V. I., Cherenda N. N. (2018) Formation and Investigation of Plasma Powder Coatings Made of Oxide Ceramics Modified with High-Energy Effects. Nauka i Tekhnika = Science & Technique, 17 (5), 378–389. https://doi.org/10.21122/2227-1031-2018-17-5-378-389 (in Russian).

12. Okovity V. A., Devoino O. G., Panteleenko F. A., Okovity V. V. (2017) Method for Producing Composite Ceramic Material. Patent Republic of Belarus No 21217 (in Russian).

13. Okovity V. A., Devoino O. G., Okovity V. V., Astashinsky V. M. (2018) Method for Producing a Composite Ceramic Material. Patent Republic of Belarus No 21829 (in Russian).


Review

For citations:


Okovity V.A., Panteleenko F.I., Okovity V.V., Astashinsky V.M. Formation of Plasma Powder Coatings from Cermet with Subsequent High-Energy Modification. Science & Technique. 2020;19(6):469-474. (In Russ.) https://doi.org/10.21122/2227-1031-2020-19-6-469-474

Views: 2815


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2227-1031 (Print)
ISSN 2414-0392 (Online)