Battery Ageing as Part of the System Design of Battery Electric Urban Bus Fleets
https://doi.org/10.21122/2227-1031-2020-19-1-12-19
Abstract
The lifetime of traction battery systems is an essential feature of the economy of battery electric urban bus fleets. This paper presents a model for the analysis and prediction of the lifetime of urban electric bus batteries. The parameterization of the model is based on laboratory measurements. The empirical ageing model is an integral part of a three-stage battery model, which in turn is an important component of the methodology for the overall system design, evaluation and optimisation of battery electric urban bus fleets. In an equidistant closed simulation loop, the electrical and thermal loads of the traction battery are determined, which are then used in the ageing model to calculate the SOH (state of health) of the battery. The closed simulation loop also considers the effects of a constantly changing SOH on the driving dynamics of the vehicles. The model for lifetime analysis and prognosis is presented in the paper, placed in the context of the overall system design and demonstrated by means of a practice-oriented example. The results show that the optimal system design depends, among other things, on whether an ageing simulation was used. Taking battery aging into account, system costs in the example presented can be reduced by up to 17 %.
About the Authors
M. UfertGermany
Address for correspondence: Ufert Martin – Dresden University of Technology, Dresden Institute of Automobile Engineering, 8 Dezernat str., 01062, Dresden, Federal Republic of Germany. Tel.: +49 351 463-39-563 martin.ufert@tu-dresden.de
B. Bäker
Germany
Dresden Institute of Automobile Engineering
Dresden
References
1. Union Internationale des Transports Publics (2017) ZeEUS eBus Report #2: An updated overview of electric buses in Europe, 2017. Available at: https://alatransit.kz/sites/default/files/zeeus-ebus-report-internet.pdf
2. Bunzel A., Petersohn R., Bäker B. (2016) Dresden's bus route 79 turned into full electric Opportunity and challenge. Hoff C., Sirch O. (eds.) Elektrik, Elektronik in Hybridund Elektrofahrzeugen und elektrisches Energiemanagement VII. Renningen. Expert-Verlag, Fachbuch / Haus der Technik, Band 142 (in German).
3. Werwitzke C. (2018) Mercedes-Benz rückt Serien-eCitaro ins Rampenlicht. Available at: https://www.electrive.net/2018/07/10/mercedes-benz-rueckt-den-ecitaro-ins-rampenlicht (accesed 17 January 2019).
4. Technische Daten: Sileo S18. Available at: https://www.sileo-ebus.com/fileadmin/user_upload/service/download/datenblaetter/Sileo_Datenblatt_S18_DE_Ansicht_11-10-2018.pdf (accesed 17 January 2019).
5. Ufert M. (2018) Systemauslegung batterie-elektrischer Stadtbuslinien unter Berücksichtigung des Alterungsverhaltens der Hochvolt-Traktionsenergiespeicher [System design of battery-electric urban bus lines considering the ageing behaviour of the high-voltage traction energy storage devices]. 6th International E-Bus Conference. Solingen, Germany (in German).
6. Ufert M. (2018) Dimensionierung von Energiespeicher und Ladeinfrastruktur am Beispiel von Elektrobussen. Symposium „Elektrische Fahr-zeugantriebe und -ausrüstungen“. Dresden, 30.11.2018. Available at: https://www.researchgate.net/publication/329309560_Dimensionierung_von_Energiespeicher_und_Ladeinfrastruktur_am_Beispiel_von_Elektrobussen (in German).
7. Kampker A., Vallée D., Schnettler A. (eds.) (2018) Elektromobilität: Grundlagen einer Zukunftstechnologie. Berlin, Springer-Verlag (in German). https://doi.org/10.1007/978-3-662-53137-2
8. Bunzel A., Baker B. (2018) Energy consumption of electric city buses: Determination as a part of a technological and economic evaluation of bus lines with regards to their electrifiability. 2018 IEEE International Conference on Electrical Systems for Aircraft, Railway, Ship Propulsion and Road Vehicles & International Transportation Electrification Conference (ESARS-ITEC). https://doi.org/10.1109/esars-itec.2018.8607520
9. Einhorn M., Conte V., Kral C., Fleig J. (2011) Comparison of electrical battery models using a numerically optimized parameterization method. IEEE Vehicle Power and Propulsion Conference. https://doi.org/10.1109/vppc.2011.6043060
10. Morawietz L., Kutter S., Falsett R., Bäker B. (2008) Thermoelektrische Modellierung eines Lithium-Ionen-Energiespeichers fuer den Fahrzeugeinsatz. Innovative Fahrzeugantriebe 2008: Tagung Dresden, 6. und 7. November 2008. Düsseldorf, VDI-Verlag, 299–318 (in German).
11. Fleckenstein M. (2013) Modellbasiertes Thermomanagement für Li-Ionen-Zellen in elektrischen Fahrzeuganwendungen. München, Verlag Dr. Hut. Zugl.: Technische Universität Dresden, Diss. (in German).
12. Ufert M., Batzdorf A., Morawietz M. (2018) Prädiktion der Lebensdauer von Traktionsbatteriesystemen für reale Nutzungsszenarien. VDI-Fachtagung Innovative Antriebe 2018: Der Ausblick auf die Fahrzeugantriebe für die kommenden Dekaden, 33-48 (in German).
13. Kunith A. W. (2017) Elektrifizierung des urbanen öffentlichen Busverkehrs: Technologiebewertung für den kosteneffizienten Betrieb emis-sionsfreier Bussysteme. Springer Vieweg, Wiesbaden. (in German). http://dx.doi.org/10.1007/978-3-658-19347-8
Review
For citations:
Ufert M., Bäker B. Battery Ageing as Part of the System Design of Battery Electric Urban Bus Fleets. Science & Technique. 2020;19(1):12-19. https://doi.org/10.21122/2227-1031-2020-19-1-12-19