1. Sadovskaya E. A., Leonovich S. N. (2022) Optimization of Composition of Nanofiber Concrete in Terms of Fracture Toughness by Matrix Modification. Nauka i Tekhnika = Science and Technique, 21 (6), 499-503 (in Russian). https://doi.org/10.21122/2227-1031-2022-21-6-499-503.
2. Sadovskaya E. A., Leonovich S. N., Zhdanok S. A., Polonina E. N. (2020) Tensile Strength of Nanofibrous Concrete. Journal of Engineering Physics and Thermophysics, 93 (4), 1015-1019. https://doi.org/10.1007/s10891-020-02202-8.
3. Koleda E. A., Leonovich S. N., Zhdanok S. A. (2018) Results of tensile tests of Nanofibre Concrete with Complex Fiber Reinforcement. Vestnik Povolzhskogo Gosudarstvennogo Tekhnologicheskogo Universiteta. Ser.: Materialy. Konstruktsii. Tekhnologii = Vestnik of Volga State University of Technology. Series “Materials. Constructions. Technologies”, (2), 16-23 (in Russian).
4. Koleda E. A., Leonovich S. N. (2016) Non-Destructive Quality Control of Fiber-Reinforced Concrete Structures as a Component of the Risk Monitoring System During the Operation of a Production Facility. Sistemnye Tekhnologii = System Technologies, (2), 85-95 (in Russian).
5. Sadovskaya E. A., Polonina E. N., Leonovich S. N., Zhdanok S. A., Potapov V. V. (2022) Fracture Toughness of Nanofiber-Reinforced Concrete on Normal Separation and In-Plane Shear. Journal of Engineering Physics and Thermophysics, 95 (4), 945-952. https://doi.org/10.1007/s10891-022-02551-6.
6. Polonina E. N., Leonovich S. N., Khroustalev B. M., Sadovskaya E. A., Budrevich N. A. (2021) Cement-Based Materials Modified with Nanoscale Additives. Nauka i Tekhnika = Science and Technique, 20 (3), 189-194. https://doi.org/10.21122/2227-1031-2021-20-3-189-194.
7. Xuesen Li, Jie Dai, Mingke Deng (2021) Shear Behavior of High Ductile Fiber Reinforced Concrete Beams. Alexandria Engineering Journal, 60 (1), 1665-1675. https://doi.org/10.1016/j.aej.2020.11.017.
8. Zhdanok S. A., Polonina E. N., Leonovich S. N., Khroustalev B. M., Koleda E. A. (2019) Physicomechanical Characteristics of Concrete Modified by a Nanostructured-Carbon-Based Plasticizing Admixture. Journal of Engineering Physics and Thermophysics, 92 (1), 12-18. https://doi.org/10.1007/s10891-019-01902-0.
9. Bazhenov Yu. M., Chernyshov E. M., Korotkikh D. N. (2014) Construction of Modern Concrete Structures: Defining Principles and Technological Platforms. Stroitel’nye Materialy = Construction Materials, (3), 6-14 (in Russian).
10. Congro M., Sanchez E.C.M., Roehl D., Marangon E. (2019) Fracture Modeling of Fiber Reinforced Concrete in a Multiscale Approach. Composites Part B: Engineering, 174, 106958. https://doi.org/10.1016/j.compositesb.2019.106958.
11. Leonovich S. N., Sadovskaya E. A. (2022) Nanofiber Concrete: Multi-Level Reinforcement. Nauka i Tekhnika = Science and Technique, 21 (5), 392-396. https://doi.org/10.21122/2227-1031-2022-21-5-392-396.
12. Snezhkov D. Yu, Leonovich S. N. (2017) Multiwave Ultrasonic Control of Concrete. Nauka i Tekhnika = Science and Technique, 16 (4), 289-297 (in Russian). https://doi.org/10.21122/2227-1031-2017-16-4-289-297.
13. Snezhkov D. Yu., Leonovich S. N. (2012) Improving the Reliability of the Control of Concrete Strength by Non-Destructive Methods Based on Their Combination. Promyshlennoe i Grazhdanskoe Stroitel’stvo = Industrial and Civil Engineering, (1), 25-32 (in Russian).
14. Shevaldykin V. G., Samokrutov A. A., Kozlov V. N. (2003) Ultrasonic Low-Frequency Piezoelectric Transducers with Dry Point Contact and their Application for Non-Destructive Testing. Kontrol’. Diagnostika = Testing. Diagnostics, (2), 30-39 (in Russian).
15. Kozlov V. N., Samokrutov A. A., Shevaldykin V. G. (2002) Ultrasonic Flaw Detection of Concrete by the Echo Method: State and Prospects. V Mire Nerazrushayushchego Kontrolya, (2), 6-10 (in Russian).
16. Zhdanok S. A., Polonina E. N., Leonovich S. N., Khroustalev B. M., Koleda E. A. Influence of the Nanostructured-Carbon-Based Plasticizing Admixture in a Self-Compacting Concrete Mix on its Technological Properties. Journal of Engineering Physics and Thermophysics, 92 (2), 376-382. https://doi.org/10.1007/s10891-019-01941-7.
17. Sadovskaya E. A., Leonovich S. N., Polonina E. N., Budrevich N. A. (2020) Method of Quality Control of Steel Fiber Reinforced Concrete by Stress Intensity Factor at Normal Separation. Povedenie Betonov i Zhelezobetonnykh Konstruktsii Pri Nalichii Nagruzok i Teplovlazhnostnykh Vozdeistvii Razlichnoi Dlitel'nosti: Elktronnyi Sbornik Nauchnykh Trudov Mezhdunarodnoi Nauch.-Tekhn. Konf. [Behavior of Concrete and Reinforced Concrete Structures in the Presence of Loads and Heat and Moisture Influences of Various Durations: Electronic Collection of Scientific Papers of the International Scientific and Technical Conference]. Makeevka, DONNASA, 47-52 (in Russian).
18. Leonovich S. N., Zverev V. F., Litvinovsky D. A. Brittle Fracture Criteria for High-Strength Concrete. Mekhanika Razrusheniya Stroitel'nykh Materialov i Konstruktsii: Materialy VIII Akademicheskikh Chtenii RAASN. [Fracture Mechanics of Building Materials and Structures. Proceedings of the 8th Academic Readings of the RAASN Russian Academy of Architecture and Construction Sciences]. Kazan, Kazan State University of Architecture and Engineering (KSUAE), 169-173 (in Russian).
19. Leonovich S. N., Litvinovskii D. A. (2021) Method for Determining the Critical Stress Intensity Factor of High-Strength Concrete. Patent of the Republic of Belarus No 16194 (in Russian).
20. Leonovich S. N., Litvinovskii D. A., Kim L. V. (2017) Method for Determining the Critical Stress Intensity Factor of High-Strength Concrete. Patent RU 2621618 (in Russian).