УДК 621.179

ОСОБЕННОСТИ РАСПРОСТРАНЕНИЯ ВОЛН ЛЭМБА В ТОНКИХ ДВУХСЛОЙНЫХ МАТЕРИАЛАХ

Докт. техн. наук БАЕВ А. Р., акад., докт. техн. наук ПРОХОРЕНКО П. П.

ГНУ «ИПФ НАН Беларуси»

Объективная необходимость длительного периода эксплуатации парка теплоэнергетических установок и оборудования химических, нефтехимических производств и ряда других требует ускоренного развертывания системы обеспечения безопасности и «живучести» основных элементов оборудования. Для повышения износостойкости и долговечности значительного числа объектов используются технологии нанесения металлических и неметаллических покрытий преимущественно стальное основание: пайка, газопламенное напыление, сварка взрывом, склейка и др. То есть поверхностный слой ряда элементов технологического объекта искусственно приобретает дискретно-слоистую структуру, отличающуюся от основного металла своими физико-механическими свойствами. При этом достаточно часто возникает необходимость определения толщины покрытия и оценки качества и площади сцепления $S_{\rm c}$ или несцепления $S_{\rm hc}$ материалов, где $S_{HC} = S - S_{C}$.

Для решения указанного класса задач используются различные методы и средства неразрушающего контроля (НК), включая традиционные: акустические, электромагнитные, токовихревые, радиационные и др. [1], применение которых возможно лишь для ограниченного набора контактирующих материалов и их толщин. В частности, особые трудности возникают в том случае, когда контролируемый объект представляет собой протяженную двухслойную среду с достаточно малой толщиной покрытия h_1 и основы h_2 , где $h_{12} = h_1/h_2 < 1$. Толщина покрытия может составлять величину $h_1 \sim 1-10^2$ мк и более. Это покрытие может быть выполнено как с внешней, так и «внутренней» стороны основы объекта (трубы, радиаторы и др.) или с обеих его сторон. Кроме того, в ряде случаев доступ к внешней поверхности объекта ограничен или невозможен. Проведение такого контроля необходимо как при изготовления изделия, так и в процессе его эксплуатации.

Решение данной задачи с помощью упомянутых выше традиционных методов не возможно либо весьма трудоемко. Для этого нами предлагается новый подход, основанный на использовании особенностей распространения волн Лэмба в двухслойных волноводах [2].

Теоретический анализ. Как известно, уравнение, описывающее распространение упругих волн в однородных по структуре пластинах через скалярный ϕ_n и векторный потенциал ψ_n , согласно [2] имеет вид

$$\Delta \varphi_{\pi} + k_l^2 \varphi_{\pi} = 0; \ \Delta \psi_{\pi} + k_t^2 \psi_{\pi} = 0,$$
 (1)

где
$$k_l = 2\pi \sqrt{\frac{\rho}{\lambda_n + 2\mu}}^{\frac{1}{2}}$$
; $k_l = 2\pi f \left(\frac{\rho}{\mu}\right)^{\frac{1}{2}}$ — волновые

числа соответственно продольных и поперечных волн; λ_π и 2μ – упругие постоянные; ρ – плотность среды.

Связи этих потенциалов с компонентами смещений по осям x и z приведены в [2]. Ось x совпадает с направлением распространения волны, а ось z перпендикулярна ей и лежит в плоскости падения волны, причем компоненты тензора напряжений $\sigma_{ij} = 0$ на свободных поверхностях $z = \pm h/2$. Для этого случая решение уравнения (1) имеет вид:

$$\varphi = A_S \operatorname{ch} qz \exp(ikx) + B_a \operatorname{sh} qz \exp ikx;$$

$$\psi = D_S \operatorname{sh} sz \exp(ikx) + C_a \operatorname{ch} sz \exp ikx,$$
(2)

где $q = k^2 - k_l^2$; $s = k^2 - k_l^2$; k – волновое число волн Лэмба; $\{A_S, B_a, D_S, C_a\}$ – постоянные.

Анализ всех возможных типов волн, которые возбуждаются и распространяются в пластинах, показывает, что в общем случае скорости их распространения C_L зависят от толщины пластины, упругих свойств материала и частоты волны f. Причем максимально возможная

величина C_L не превышает скорости продольной волны в бесконечном пространстве. Нами обращено внимание на особенности распространения в тонких пластинах самой быстрой симметричной s_0 -моды. Необходимо отметить, что для всех номеров возбуждаемых в пластине мод наблюдается дисперсия скорости звуковой волны. Что касается s_0 -моды, то она является не только самой быстрой, но и при некоторой толщине пластины h и значении $p_t = k_t h < p_t * << 1$ ее скорость практически неизменна и стремится к значению

$$C_{S_0} = \sqrt{\frac{E}{\rho \left(1 - \aleph^2\right)}},\tag{3}$$

где E — модуль Юнга; \aleph — коэффициент Пуассона, который для широкого класса металлов изменяется в диапазоне 0,26—0,35. Продольные же U_{S_0} и поперечные W_{S_0} смещения волны в пластине имеют вид:

$$U_{S_0} = A \frac{k_s^2 - s_s^2}{k_s^2 h} \sin(k_s x - \omega t);$$

$$W_{S_0} = U_{S_0} q_s z \operatorname{ctg}(k_s x - \omega t).$$

Как видно, в продольной волне преобладает смещение волны по оси x, амплитуда которого одинакова во всех точках пластинки. Смещение же в поперечном направлении, происходящее за счет эффекта Пуассона, значительно меньше продольного смещения, причем $\varepsilon_{zx} = U_{S_0}/W_{S_0} = (hk_l)^{-1}$. Так, для латунной пластины толщиной 0,2 мм и на рабочей частоте волны f=1 МГц $\varepsilon_{zx}\approx 15$. Величина же поперечного смещения максимальна на поверхности пластины и равна нулю в окрестности плоскости пластины z=0.

Рассмотрим ситуацию, когда двухслойная пластина изготовлена из материалов, отличающихся упругими свойствами, причем выполняется условие

$$\{(k_t)_1h_1, (k_t)_2h_2\} << 1.$$
 (4)

При выполнении этого условия в каждом из материалов в отдельности (при отсутствии сцепления) будет распространяться s_0 -мода со скоростями $\left(C_{s_0}\right)_1$ и $\left(C_{s_0}\right)_2$, определяемыми формулой (3), где нижний индекс i=1 соответствует защитному слою, а i=2 – слою основы.

Пусть по всей поверхности контакта материалов с разными акустическими свойствами сцепление жесткое, т. е. выполняется условие:

$$(\sigma_{ij})_1 = (\sigma_{ij})_2$$
 и $(U_{S_0})_1 = (U_{S_0})_2$;
 $(W_{S_0})_1 = (W_{S_0})_2$ при $z = 0$, (5)

а также справедливо условие (4). Если учесть к тому же, что преобладающий вклад в интенсивность колебательного процесса волны вносит ее продольная составляющая $(U_{S_0}^2 >> W_{S_0}^2)$, то можно предложить упрощенную модель волнового процесса для наиболее быстрой моды. Так, необходимо отметить (как показали предварительные экспериментальные исследования, методика измерений которых приведена ниже), в тонких двухслойных пластинах распространяется практически недиспергирующая мода, скорость которой C_{s}^{*} по величине удовлетворяет условию: $\min(C_{S_0})_i < C_{S_0}^* < \max(C_{S_0})_i$. В этом случае в качестве модельной системы (акустического волновода) можно рассматривать многослойную систему из бесконечно тонких пластин, толщина которых в защитном слое и слое основы $h_{1n} = \frac{h_1}{n}$ и $h_{2n} = \frac{h_2}{n}$ соответственно, где $n \to \infty$. Предполагаем также, что $\sigma_{xx} = \sigma_{zx} = 0$ на поверхности каждой бесконечно тонкой пластины. Поскольку длина волны, распространяющейся в таком волноводе, $\lambda_L >> h = h_1 + h_2$, естественно положить, что скорость распространяющейся моды $C_{s_*}^*$ определяется некоторыми усредненными параметрами волновода - упругими и плотностью. Пренебрегая эффектами некнезеровского механизма термической релаксации, воспользуемся подходом, предложенным для определения скорости объемной волны в гетерогенной жидкой среде [3]. Он основан на предположении, что эффективные упругие константы и плотность определяются согласно аддитивному правилу или правилу смешения:

$$E^{-1} = E_1^{-1} h_1' + E_2^{-1} h_2';$$

$$\aleph = \aleph_1 h_1' + \aleph_2 h_2'; \ \rho = \rho_1 h_1' + \rho_2 h_2',$$

где $h_1' = h_1/h$; $h_2' = h_2/h$.

Учитывая, что $\aleph = 0.26$ –0.34, и используя формулу (3), эффективная скорость пластинчатой волны может быть определена по формуле

$$C_{S_0}^{*} \approx \sqrt{\frac{E}{\rho}} \left(1 + \frac{\aleph^2}{2} \right) =$$

$$= \sqrt{\frac{E_2}{\rho_2}} \sqrt{\frac{1}{\left[1 + h_1' \left(E_{21} - 1 \right) \right] \left[1 + h_1' \left(\rho_{12} - 1 \right) \right]}} \times \left(6 \right)$$

$$\times \left\{ 1 + \frac{\left(\aleph_2 h_2' \right)^2}{2} \left[1 + 2 \frac{\aleph_1}{\aleph_2} \frac{h^2}{h_2} + \left(\frac{\aleph_1 h_1'}{\aleph_2 h_2'} \right)^2 \right] \right\},$$

где
$$E_{21} = \frac{E_2}{E_1}$$
; $\rho_{12} = \frac{\rho_1}{\rho_2}$.

Как можно легко показать, вклад второго (справа) члена не превосходит 1,5–2 %, если $h_{12} = h_1/h_2$ изменяется от нуля до единицы. В то же время именно первый член, по существу, определяет величину и изменение $C_{S_0}^*$ в биметаллах в зависимости от упругих свойств и плотностей контактирующих материалов. Так, пусть $h_{12} < 1$, тогда характер изменения скорости пластинчатой моды от h_1 с точностью до второго порядка малости будет иметь вид

$$C_{S_0} \approx \sqrt{\frac{E_2}{\rho_2}} \left[1 - \frac{h_1'}{2} (E_{21} + \rho_{12} - 2) \right] \left(1 + \frac{\aleph_2^2}{2} \right).$$
 (7)

Откуда следует формула для определения h'_1

$$h_1' \approx 2 \left(\frac{C_{S_0}^*}{\left(1 + \frac{\aleph_2^2}{2}\right) \sqrt{\frac{E_2}{\rho_2}}} + 1 \right) \frac{1}{E_{21} + \rho_{12} - 2}.$$
 (8)

Таким образом, изменение скорости УЗК в зависимости от толщины покрытия будет наблюдаться в том случае, когда $\rho_1 E_1 \neq \rho_2 E_2$.

Результаты экспериментальных исследований и их обсуждение. Для проверки теоретического анализа были проведены экспериментальные исследования согласно представленной на рис. 1 схеме.

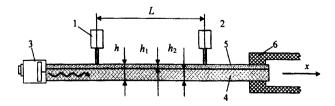


Рис. 1. Экспериментальная схема измерения толщины покрытия: 1, 2 — приемные ПЭП; 3 — излучатель; 4 — основа; 5 — покрытие; 6 — механический зажим

Исследуемая биметаллическая пластина. представляющая собой латунное основание толщиной 190 мкм с нанесенным слоем оловянно-свинцового припоя ПОС-1, зажимается захватами и растягивается специальными горизонтальном направлении. (Предварительно измерялась скорость УЗК и плотность ПОС-1 и латуни.) На один из торцов пластины устанавливается пьезоэлектрический преобразователь (ПЭП) продольных волн на рабочую частоту 1 МГц, служащий в качестве излучателя. Прием акустического сигнала производится двумя малоапертурными ПЭП [4], разработанными в ИПФ НАН Беларуси и имеющими малую площадь акустического контакта, что обеспечивает высокую точность измерений временного интервала с погрешностью в пределах ±10 нс.

Акустическая база между приемными ПЭП постоянная и составляет L=70 мм. Зная данные о времени распространения акустического сигнала t_{12} между приемными преобразователями, определяем скорость исследуемой моды по формуле $C_{S_0}^* = L/t_{12}$, а затем в соответствии с (6) и (8) рассчитываем толщину покрытия h_1 . Для возбуждения, приема сигнала и измерения временного интервала применяется традиционная измерительная схема, описанная нами в [3], где используются блоки прибора УД2-12, измеритель временных интервалов И1-8 и осциллограф С1-71. Учитывая, что толщина покрытия имеет некоторую вариацию, озвучивание объекта осуществляется с двух сторон.

Результаты сравнения данных эксперимента с расчетными формулами приведены на рис. 2, на котором теоретическая кривая изменения скорости $\Delta C_{S_0}/(C_{S_0})_2$ от h_1/h_2 представляет собой монотонно изменяющуюся зависимость, где $\Delta C_{S_0} = (C_{S_0})_2 - C_{S_0}^*$.

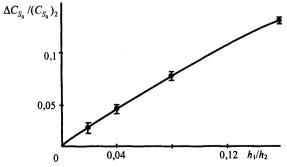


Рис. 2. Изменение скорости пластинчатой моды в зависимости от толщины покрытия: — – теория; о – эксперимент

Как видно, наблюдается хорошее соответствие между экспериментальными и расчетными данными. Представленная зависимость является монотонно возрастающей и свидетельствует о том, что наибольшая чувствительность измерений достигается в том случае, когда толщины покрытия достаточно малы. С помощью указанного метода представляется возможным фиксировать относительные изменения толщины покрытия до ~0,2-0,3 мкм при изменении h_1 в диапазоне 5–10 мкм. Весьма важно отметить, что для указанных выше условий эксперимента «временная» погрешность измерений не превышала 10 нс, а относительная $-\sim 0.15$ %. Более высокая чувствительность метода достигается с увеличением акустической базы.

Учитывая полученные выше можно легко показать, что с помощью предложенного метода представляется возможным измерять не только толщину покрытия и размеры областей несцепления материалов (или ухудшения качества сцепления), а также оценивать суммарную площадь дефектной зоны. Суть предложенного заключается в последовательном прозвучивании участков объекта волнами Лэмба и измерении времени распространения сигнала, а затем в «восстановлении» искомой характеристики согласно соотношениям, выведенным на основании представленных выше формул. При этом предполагается, что как толщина, так и скорость распространения волны Лэмба в основе и покрытии постоянные. Пусть на некотором участке пластины длиной Lи шириной d имеется i протяженных зон длиной l_i с отсутствием сцепления, причем время распространения волны в основе $t_2 = L/(C_{S_0})_2$, а через двухслойную пластину t_{ni} . Пренебрегая расходимостью волны и дифракционными явлениями [1], выражение для оценки площади несцепления материалов может быть представлено в виде:

$$\Delta S = \sum_{i=1}^{j} \Delta S_{j} = jd \frac{\Delta C_{S_{0}}}{C_{S_{0}}^{*}(C_{S_{0}})_{2}} t_{2} \sum_{i=1}^{i_{0}} d \left(\frac{t_{nj}}{t_{2}} - 1 \right).$$

Таким образом, используя указанную выше методику, представляется возможным оценить не только толщину покрытия, но и интегральную площадь некачественного сцепления поверхностей двухслойного неразъемного соединения. Необходимо отметить, что использова-

ние предложенного подхода может быть использовано для контроля не только двухслойных, но и подобных многослойных объектов, включая не только пластинчатые, но и слоистые цилиндрические изделия с попереч-

ным размером
$$D = 2\sum_{m=1}^{m_0} h_m << \lambda_t$$
, где λ_t – харак-

терная длина поперечной волны.

выводы

- 1. Проведен анализ особенностей возбуждения и распространения s_0 -моды волны Лэмба в пластинах и показано, что в двухслойной достаточно тонкой пластине скорость распространения наиболее быстрой (эффективной) моды определяется параметрами материала такого однородного волновода, у которого обратный модуль и плотность находятся на основе правила смешения указанных параметров контактирующих материалов.
- 2. Получены аналитические выражения для: оценки толщины покрытия по данным скорости распространения моды волны Лэмба $C_{S_0}^*$ через двухслойную тонкую пластину; определения общей площади несцепления материалов по данным времени распространения исследуемой моды на всех участках контролируемого объекта.
- 3. Проведенные экспериментальные исследования находятся в хорошем количественном соответствии с расчетными данными.

ЛИТЕРАТУРА

- 1. **Неразрушающий** контроль: справ.: в 7 т. Т. 3: Ультразвуковой контроль / И. Н. Ермолов, Ю. В. Ланге; под ред. чл.-кор. РАН В. В. Клюева. М.: Машиностроение, 2004. 832 с.
- 2. Викторов, И. А. Звуковые поверхностные волны в твердых телах / И. А. Викторов. М.: Наука, 1981.
- 3. Баев, А. Р. Магнитные жидкости в технической акустике и неразрушающем контроле / А. Р. Баев, Г. Е. Коновалов, А. Л. Майоров; под ред. П. П. Прохоренко. Минск: Тэхналогія, 1999. 299 с.
- 4. Влияние геометрии поверхности твердых тел и жидкой контактной среды на распространение подповерхностных волн / А. Р. Баев [и др.] // Достижения физики неразрушающего контроля: сб. тр. Института прикладной физики НАН Беларуси. Минск: Институт прикладной физики, 2003. С. 224–236.

Поступила 30.05.2008