ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ

УДК 676.1.022

МОДЕЛИРОВАНИЕ И ОПТИМИЗАЦИЯ ПРОЦЕССА ЩЕЛОЧНОЙ ВАРКИ ДРЕВЕСИНЫ В ПРИСУТСТВИИ СОЛЕЙ НЕКОТОРЫХ МЕТАЛЛОВ ПЕРЕМЕННОЙ ВАЛЕНТНОСТИ

Докт. техн. наук КАРПУНИН И. И.

Белорусский национальный технический университет

На основании проведенных автором исследований [1-4] и материалов [5] возникла необходимость моделирования процесса щелочной варки в присутствии некоторых солей металлов переменной валентности. Это диктуется необходимостью выдачи определенных данных по ведению технологического процесса щелочной варки в производственных условиях по оптимальным параметрам. В отличие от обычной сульфатной варки в рассматриваемом случае необходимо было учесть влияние солей, приводящих к улучшению делигнификации и увеличению выхода волокнистого полуфабриката с меньшим содержанием лигнина. Для моделирования и оптимизации процесса был применен метод математического планирования эксперимента, для чего использовались подходы, изложенные в [1-4].

При щелочной варке растительного сырья переменными факторами являются температура варки, время протекания процесса и концентрация взятой соли. Необходимые исходные данные для планирования эксперимента представлены в табл. 1. При этом следует отметить, что на протекание процесса щелочной делигнификации оказывают влияние как природа металла, так и его количество. Выполняемые автором исследования были проведены с целью оптимизации процесса щелочной варки древесины в присутствии сернокислой меди. Что касается оптимизации процесса щелочной варки растительного сырья, то следует заметить, что в присутствии других металлов переменной валентности опыты проводились в аналогичных условиях. Полученные результаты зависели от химической природы добавленного металла.

Характеристика плана Хартли представлена в табл. 2. Коэффициенты регрессии, полученные расчетным путем, приведены в табл. 3. Выходные параметры для уравнений регрессии (табл. 3): Y_1 – выход; Y_2 – содержание остаточного лигнина; Y_3 – степень делигнификации; *Y*₄ - степень удаления углеводов. По оценке значений коэффициентов регрессии и адекватности, модели для указанных параметров были получены уравнения регрессии.

Таблица 1

Данные для планирования эксперимента

Характеристика плана	Переменный фактор								
	Температура X_1 , °С			Время варки X_2 , ч			Концентрация соли металла переменной валентности X_3 *		
	1	2	3	1	2	3	1	2	3
Основной уровень (0)	175	160	165	2,5	2,5	2,5	0,05	0,05	0,05
Верхний уровень (+)	180	170	175	3,0	3,0	3,0	0,10	0,10	0,10
Нижний уровень (-)	160	150	150	2,0	2,0	2,0	0,01	0,01	0,01

Примечание. 1 – хвойные породы (ель); 2 – лиственные породы (береза); 3 – смесь пород древесины (40 % березы + + 60 % ели).

^{*} В качестве добавки в щелок использовали медный купорос.

Таблица 2 Характеристика плана Хартли

Показатель	Значение показателя				
Номер плана	6				
Область эксперимента	Куб				
Ядро плана	X_2X_3				
Число опытов в ядре N_1	8				
Звездное	1				
Число звездных точек 2k	8				
Число опытов в центре n_0	4				
Общее число опытов N	20				

Значение параметров оптимизации переводили в соответствующие желательности (d_1 , d_2 , d_3 , d_4) и устанавливали обобщающую функцию желательности как среднее геометрическое $D = \sqrt{d_1 d_2 d_3 d_4}$.

Уравнение регрессии оценивали на воспроизводимость опытов (по критерию Кохрена). Опыты оказались воспроизводимыми. Так, $G_p \leq G_{\text{табл}}$, где G_p — отношение наибольшей из оценок к сумме всех оценок дисперсий.

Уравнение регрессии оценивали на адекватность по критерию Фишера.

Для нахождения оптимальных условий использовали уравнение

$$Y = B_0 + B_1 X_1 + X_2 + B_3 X_3 + B_{11} X_1 X_2 + B_{13} X_1 X_3 + B_{23} X_2 X_3 + B_{10} X_1^2 + B_{20} X_2^2 + B_{31} X_3^2,$$
(1)

где B_0 , B_1 , B_2 , B_3 , B_{11} , B_{13} , B_{23} , B_{10} , B_{20} , B_{31} – коэффициенты регрессии; переменные факторы: X_1 – температура; X_2 – время варки; X_3 – концентрация соли металла переменной валентности.

Анализ полученных уравнений показывает, что поверхность отклика выходных параметров

 (Y_1, Y_2, Y_3, Y_4) представляет параболоид. Параболоид имеет точку вне плана эксперимента. Из литературных данных известно, что все многообразие поверхностей отклика разделяется на 3 класса. В рассматриваемом автором случае поверхность отклика принадлежит к 3-му классу и представляет собой тип «седла». Такие поверхности характеризуются тем, что коэффициенты уравнения в канонической форме имеют разные знаки, а центр поверхности находится поблизости от центра эксперимента. Для нахождения условного экстремума и критерия оптимальности с участием медного купороса необходимо было учитывать ограничения, наложенные на влияющие факторы и остальные функции отклика. Статистический анализ экспериментальных данных был проведен согласно литературным источникам. Все коэффициенты оказались значимыми ($B_i > tS_{Bi}$). Принятая модель является адекватной, так как по критерию Фишера $P_{\text{расч}} < P_{\text{табл}}$.

Вычисления, выполненные на ЭВМ, показывали, что оптимальный параметр имеет максимум для хвойных пород древесины (ель), если варку вести при температуре 175-180 °C в течение 3 ч с содержанием $CuSO_4 \cdot 5H_2O$ в щелоке -0.03 % к навеске исходного сырья. Для лиственных пород древесины (береза) температура должна быть 165-170 °C, а процесс варки продолжаться в течение 2.5 ч; для смеси хвойных и лиственных пород древесины (60 % ели +40 % березы) температура должна быть в пределах 170-175 °C, содержание $CuSO_4 \cdot 5H_2O$ в щелоке -0.03-0.04 % к навеске исходного сырья, время варки -2.75 ч.

Таблица 3

Коэффициенты регрессии, полученные расчетным путем

Порода древесины	Индекс пара- метра	B_0	B_1	B_2	B_3	B_{10}	B_{11}	B_{13}	B_{20}	B_{23}	B_{31}
Ель	Y_1	53,42	-13,27	5,05	2,05	-1,19	-3,52	0,07	0,10	-0,84	3,54
	Y_2	9,67	-10,32	2,25	-0,2	-3,55	0,57	2,84	-2,90	-1,8	2,42
	Y_3	81,54	24,92	8,27	-0,64	1,53	0,92	1,92	-1,80	-0,40	-8,46
	Y_4	26,05	7,84	5,67	2,40	-5,66	0,12	3,15	0,30	-2,72	-3,68
Береза	Y_1	49,52	-11,05	-4,55	4,84	3,07	0,15	-2,20	2,47	0,23	2,62
	Y_2	7,05	-4,11	-2,82	1,23	-0,26	-0,22	0,09	-0,21	-0,66	1,10
	Y_3	83,77	18,19	12,07	-6,95	-4,81	2,80	1,85	-5,54	-0,18	-5,43
	Y_4	30,75	6,62	7,49	-5,03	-2,93	2,02	-2,28	0,12	0,84	-1,85
Смесь хвойных	Y_1	51,37	-16,61	-4,42	2,59	0,52	-2,81	0,32	0,74	1,15	4,12
и лиственных пород (60 % ели + + 40 % березы)	Y_2	8,51	-9,57	-2,16	0,07	-2,91	0,41	1,76	-2,30	-1,19	2,96
	<i>Y</i> ₃	82,80	25,22	8,91	0,00	2,17	1,31	-3,23	-0,99	1,80	10,56
	Y_4	28,60	6,18	1,37	-5,01	0,04	1,98	1,07	-2,06	-1,03	-3,05

Анализ литературных данных позволил использовать имеющиеся в них подходы для разработки оптимальных условий щелочной варки растительного сырья в присутствии солей некоторых металлов переходной валентности. Результаты анализа щелочных варок опилок (с участием и без указанных солей) послужили основой для разработки оптимальных условий щелочной варки растительного сырья (древесины) в виде щепы. Для варки использовали березовую и еловую древесину, а также смесь из 60 % еловой и 40 % березовой древесины.

Полученный волокнистый полуфабрикат характеризовался как целлюлоза (I), целлюлоза высокого выхода (II), полуцеллюлоза (III). Для целлюлозы (I) выход составлял 44-50 %, для целлюлозы высокого выхода (II) -51–60 %, для полуцеллюлозы (III) - 61-68 %. Подбор фрагмента исходных данных по щелочной варке еловой и березовой древесины, а также смеси хвойных и лиственных пород в присутствии солей показывал, что при щелочной варке еловой древесины при наличии в качестве катализатора медного купороса (с достижением выхода 44-50 %, 51-60 % и 61-68 %) возрастают физико-механические свойства (разрывная длина, число двойных перегибов и сопротивление продавливанию) целевого продукта.

Расчет показал, что для оптимизации процесса при выходе целевого продукта от 44 до 50 % с заданными показателями (разрывная длина, сопротивление излому и продавливанию) щелочную варку растительного сырья нужна проводить в следующих условиях:

- еловой древесины: температура процесса 172-175 °C; время варки – 2,7-3,0 ч; количество медного купороса к навеске исходного сырья -0.035 %;
- для получения целлюлозы из березовой древесины: температура процесса – 166–168 °C; время варки – 2,2-2,4 ч; количество медного купороса -0.028 %;
- смеси хвойных и лиственных пород древесины (60 % ели + 40 % березы): температура процесса – 169–172 °C; время варки – 2,00–2,35 ч; количество медного купороса – 0,032 %.

Аналогично при получении целлюлозы высокого выхода (II) щелочную варку следует проводить:

- еловой древесины: время варки 1,10–1,22 ч; температура процесса – 177–180 °C; количество соли – 0,037 % к навеске исходного сырья:
- березовой древесины: время варки 0,88-0,92 ч; температура процесса - 175-176 °С; количество соли металла -0.022 %;

• смеси хвойных и лиственных пород древесины (60 % ели + 40 % березы): время варки – 0,95–1,10 ч; температура процесса -176–178 °С; количество соли металла – 0,042 %.

При получении полуцеллюлозы (III) щелочную варку растительного сырья нужно проводить при следующих условиях:

- еловой древесины: время варки 0,35–0,45 ч; температура процесса – 183–185 °C; количество введенной соли к навеске исходного сырья -0,017 %;
- березовой древесины: время варки 0,3-0,35 ч; температура процесса – 180-182 °C; количество соли -0.025 %;
- смеси хвойных и лиственных пород (60 % ели +40 % березы): время варки -0.33-0.37 ч; температура процесса – 182–183 °C; количество соли - 0.036 %.

ВЫВОДЫ

Оптимизация процесса щелочной (сульфатной) варки зависит от химической природы металла.

На щелочную делигнификацию растительного сырья и выход целевого продукта оказывает влияние не только природа металла, введенного в виде соли, но и его количество.

Качественные показатели целевого продукта зависят от химической природы и количества используемого металла, температуры и времени варки.

Выход целевого продукта, его физико-механические показатели и процесс делигнификации при варке в присутствии соли металла зависят и от породы древесины.

ЛИТЕРАТУРА

- 1. Карпунин, И. И. Научно-технические основы ресурсосберегающих экологически состоятельных технологий переработки растительного целлюлозосодержащего сырья: автореф. дис. ... докт. техн. наук. - Минск,
- 2. Капуцкий, Ф. Н. Исследование влияния некоторых солей металлов переменной валентности при щелочной делигнификации древесины / Ф. Н. Капуцкий, И. И. Карпунин // Журнал прикладной химии. – 1980. – Т. 53, вып. 5. – С. 1135–1139.
- 3. Карпунин, И. И. Влияние солей металлов переменной валентности на щелочную варку растительного сырья и регенерацию щелока / И. И. Карпунин // Весці НАН Беларуси. Серыя хім. навук. – 2001. – № 4. – С. 111–116.
- 4. Карпунин, И. И. Особенности щелочной варки растительного сырья с участием солей переменных металлов / И. И. Карпунин // Весці НАН Беларуси. Серыя хім. навук. – 2002. – $\stackrel{\frown}{N}_{2}$ 2. – С. 111–115.
- 5. Непенин, Ю. Н. Производство сульфатной целлюлозы. Технология целлюлозы / Ю. Н. Непенин. – М: Лесн. пром., 1990. – Т. 2. – 599 с.

Поступила 28.03.2012