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Abstract. The primary challenge with image processing applications in automated surveillance, medical, and remote sensing
is image denoising. Salt-and-pepper noise (SAPN) drastically reduces image quality by randomly changing pixel values with
high intensities. At higher noise densities, the fundamental challenge for conventional filtering algorithms is to balance noise
suppression and detail retention. In digital image processing applications accuracy is very important. However, during captu-
ring and transmission, the images are exposed to various noise frequently. In this research article, an Adaptive Weighted
Mean-Median Filter (AWMMEF) is proposed for robust Salt-and-Pepper Noise Removal Technique. In the proposed work the
filtering window size is dynamically adjusted according to the local noise density. AWMMEF integrates a weighted combina-
tion of mean and median values to enhance restoration quality while preserving image details. The efficacy of the proposed
algorithm is evaluated on standard benchmark Lena image and compared with existing denoising techniques like Adaptive
Fuzzy Median Filter, Fast and Efficient Median Filter, Nonlinear Hybrid Filter, Improved Adaptive Type-2 Fuzzy Filter,
Regeneration Filter, Deep Convolutional Neural Network and Adaptive Switching Modified Decision-Based Unsymmetric
Trimmed Median Filter. For the performance analysis, the parameters considered are the Peak Signal-to-Noise Ratio, Mean
Squared Error, Structural Similarity Index and Image Enhancement Factor. AWMMEF provides a robust and computationally
efficient solution for SAPN removal, making it suitable for real-world image processing applications.
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AanTUBHBIA MeTO/l B3BEeIIEeHHO (PUIbTpanuu
UL yIAJICHUS LIYMA THIIA «COJIb U IMepein
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Pedepat. OcHOBHOIT pobIEMOil 00pabOTKM M300paKEHHH B CHCTEMaX aBTOMATH3UPOBAHHOTO HAONIONCHUS, MEIULIUHBI 1
JUCTaHIIMOHHOTO 30HIUPOBAHUS SBJIIETCS yCTpaHEeHHe IIyMa Ha n3o0pakenusx. [llym tuma «conp u nepeny (Salt-and-pepper
noise — SAPN) cyIiecTBeHHO CHM)KaeT KaueCTBO N300pa)KeHHs 110 NPHYMHE CIyYaifHOTO M MHTEHCUBHOT'O U3MEHEHHS 3Haye-
Huil irkcenei. [Ipu 6ojee BRICOKHX IUIOTHOCTSIX IIyMa OCHOBHOM MPOOJIEMO# TpaJAUIIMOHHBIX alrOpUTMOB (QHIBTPALMHU CTa-
HOBHTCS MTOKCK OanaHca MeXAy MOJaBICHUEM IIyMa M COXpaHeHHeM Aertaneil curHana. [Ipu uudposoit 06paboTke nzobpa-
JKEHUH TOYHOCTH NPOBOAMMEIX OIepanyil oueHb BakHa. OIHAKO BO BpeMsl ChEMKH M Iepeqadd M300pakeHUi OHHM 4acTo
MOJIBEPTalOTCsl BO3JACUCTBUIO pa3IMUHbIX IIYMOB. B TaHHON MCClIeN0BaTENbCKON CTaThe MPENIaracTcs UCIOJb30BaTh alar-
TUBHBII B3BELICHHBIN cpeaHeMenannablil Gunstp (Adaptive Weighted Mean-Median Filter - AWMMF), kotopsrit oGecnieurBa-
€T Ha/Ie)KHOEe NMPHMEHEHHEe METOJa, TpeJHa3HAuYeHHOTo I yAAJICHHs IIyMa THIIA «COJIb U Iiepely. Pasmep okHa ¢uuistparym
JMHAMUYECKH PEryJUPYeTcsl B 3aBUCHMOCTH OT JIOKAIBHOW IUIOTHOCTH LIyMa. ANAaNTHBHBINA B3BELICHHBIH CpeJHEeMeIUaHHbIH
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GuIbTp 00BEUHSCT B3BEIICHHYI0 KOMOMHALMIO CPEAHUX M MEIMAHHBIX 3HAYCHHUH JUIT 00eCIedeHH s YIIydIIeHUs] KauecTBa
BOCCTAHOBJICHUSI, COXPAHssl IPH 9TOM JeTaId M300paxkeHus. DPQeKTHBHOCTh MpeuiaraeMoro ajJropuTMa OLEHHUBAeTCS Ha
CTaHJIapTHOM 3TaJIOHHOM H300paxkeHHU Lena u cpaBHMBAaeTCS ¢ TAKUMHU CYIIECTBYIOIIMMH METOJaMH IITyMOIIOABICHHS, KaK
AaNTUBHBIA HEYETKUH MEAWAaHHBIA (QUIBTp, OBICTPBI M d(deKTHBHBIN MennMaHHBIH (GUIBTP, HENWHEHHBIH T'HOPHIHBIN
GUIbTp, yIy4IICHHBIN aqanTHBHBIA HedeTKui GuibTp Tuna 2, GUIbTp pereHepanu, riy0okas CBEpTOYHAs CETh U aJlalTHB-
HbI KOMMYTalMOHHBII MOM(UINPOBAHHBI HECUMMETPHYHBIN YCCUCHHbIH MEJUAaHHBIN (QUIBTP HA OCHOBE NPHHSTHS perie-
Huit. Ilpwm aHamm3e xadecTBa pabOTHI MPETAraeéMoro METOa yIUTBIBAIOTCS CIEAYIOMINE TapaMeTphl: MHIKOBOE OTHOIIEHHE CHT-
HaJa, CPeAHEKBaApaTHIHas OMIMOKA, MHAEKC CTPYKTYPHOTO CXOACTBA M KO3(D(UINEHT yIydIeHHs N300paKeHust. AIaNTHBHBIH
B3BELICHHBIN CpeHeMeIMaHHbIi QIIBTp obecreunBaeT HaaekHoe U 3(QPEKTUBHOE pelIeHre Ul YAAJICHHS IIyMa THIA «COJb U
HepeL, 4TO MO3BOJISAET UCIIOBb30BATh €r0 ISl PealbHbIX MPUIOKEHNI 00paboTKN N300paKeHUH.

KnioueBble cioBa: ajanTuBHAS (QUIBTpanys, NIyMOINOJaBIeHHE M300paxkeHHs, KOd(pOUIUECHT yITydIeHuss H300paskeHus,
CpeHEeKBaApaTHYHAs OMIMOKA, ITyM THIIA «COJIb H TIepeIn

Jlnsi nUTHpPOBaHMSI: ATaNITUBHBINA METO/I B3BELICHHOW (HIBTpALUK AJIsl yIAJCHHS IIyMa THIA «coiib U nepeiy / M. Canromne

[u np.]// Hayxa u mexnuxa. 2025. T. 24, Ne 5. C. 350-360. https://doi.org/10.21122/2227-1031-2025-24-5-350-360

Introduction

In Image denoising is the major issue in the ap-
plications of image processing in the fields of re-
mote sensing, medical, and automated surveillance.
The salt-and-pepper noise (SAPN) is one of the
noises that significantly degrades image quality by
randomly replacing pixel values with extreme
intensities. In conventional filtering techniques,
the main problem is to balance noise suppression
and detail preservation, at higher noise densities.

Moreover, in the digital image processing do-
main, the accuracy of visual data is very important.
However, during capturing and transmission, pic-
tures are frequently vulnerable to several kinds of
noise. Salt-and-pepper noise (SAPN) is a common
type of impulsive noise in the form of random
black-and-white pixels, which considerably dimin-
ishes image quality and affects subsequent image
evaluation processes. Effective removal of SAPN
is, therefore, a critical endeavor in enhancing
image fidelity.

Conventional denoising techniques, such as the
Standard Median Filter (SMF), have been widely
employed due to their simplicity and effectiveness
in low noise densities. To effectively eliminate the
noise candidate the SMF replaces each pixel's va-
lue with the median value of the intensities in its
neighborhood. However, its performance deterio-
rates at higher noise levels, leading to blurring and
loss of vital image details [1]. In the modified ver-
sion of SMF the size of the filtering window is dy-
namically adjusted based on local noise density,
aiming to preserve edges while removing noise.
Despite its adaptive nature, the AMF can result in
excessive smoothing, especially in images with
high-density noise, thereby compromising edge
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and detail preservation [2]. Recent advancements
have seen the emergence of sophisticated methods
that blend traditional filtering techniques with
modern computational approaches. For instance,
the Edge-Adaptive Total Variation (EATV) model
segments images into edge and non-edge regions,
applying total variation denoising selectively to
maintain edge integrity while suppressing noise.
This method has demonstrated improved perfor-
mance in balancing noise reduction and detail
preservation [3]. Another notable approach is the
Detail-Aware Filter (DAF), which combines medi-
an filtering with an adaptive non-local means filter.
This hybrid technique effectively reduces noise
while retaining intricate image details, outperform-
ming traditional methods in various scenarios [4].
In the realm of high-density noise conditions, the
Nonlinear Hybrid Filter (NHF) has been proposed.
This filter integrates mathematical morphology
operations with a trimmed median filter, enhancing
robustness against noise while preserving essential
image features [1]. The Regeneration Filter (RF)
offers a different strategy by selectively processing
noisy pixels based on local context, thereby pre-
serving structural details even in heavily corrupted
images [2]. Fuzzy logic-based methods have
also gained traction, with the Improved Adaptive
Type-2 Fuzzy Filter (IAT2FF) employing type-2
fuzzy logic to distinguish between noisy and noise-
free pixels. This approach ensures precise noise
removal while maintaining image integrity [3].
The advent of deep learning has further revolution-
nized denoising techniques. The Deep Convolu-
tional Neural Network (SeConvNet) utilizes selec-
tive convolutional blocks to effectively reduce
SAPN, particularly at high noise densities, show-
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casing the potential of neural networks in image
restoration tasks [5].

Even with these advancement in noise elimina-
tion of digital images maintaining the optimal ba-
lance between noise reduction and detail preserva-
tion across varying noise densities is one of the
challenge to researchers.

In this research article the authors have pro-
posed a novel Adaptive Weighted Mean-Median
Filter (AWMMEF) that dynamically assigns weights
to mean and median values within a local window,
based on estimated noise density. The AWMMEF
aims to enhance denoising performance while pre-
serving critical image details, addressing the short-
comings of existing methods. This research article
contributes:

e A discussion on the various filtering methods
to eliminate the SAPN.

e A discussion on the implementation of
AWMMF for SAPN elimination.

e A discussion on the superior effectiveness of
AWMMF for SAPN elimination over other filters
such as Adaptive Fuzzy Median Filter (AFMF),
Fast and Efficient Median Filter (FEMF), DAF,
NHF, IAT2FF, RF, SeConvNet, and Adaptive
Switching Modified Decision-Based Unsymmetric
Trimmed Median Filter (ASMDBUTMF).

The article is structured as follows: Literature
review followed by introduction is presented in
Section 2. The proposed algorithm of AWMME is
elaborated in Section 3. Results and discussion are
presented in Section 4 followed by the Conclusion.

Literature Review

In the field of digital image processing elimina-
tion of SAPN is the biggest challenge and many
researchers are working on that. From the litera-
ture, it is concluded that over the past decade, nu-
merous methodologies have been proposed, inclu-
ding conventional median filtering techniques, and
advanced adaptive and hybrid models. In conven-
tional filters like SMF, the value of each pixel is
replaced with the median of the intensities within
a defined neighborhood. It is more effective for
low-noise density however tends to blur the image
at higher noise levels. A modified version of SMF
is an adaptive Median Filter (AMF) which adjusts
window size based on local noise density. AMF
can result in excessive smoothing, especially in
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images with significant noise [6]. Another type of
filter used to eliminate SAPN is decision-based
and switching filters (DBA). It replaces noisy
pixels using neighboring values but may cause
artifacts at high noise levels. In its modified ver-
sion decision-based unsymmetric trimmed median
filter the performance is improved by a trimming
process in high-noise conditions [7]. Further
the performance is enhanced by using adaptive
threshold mechanism for detecting noisy pixels
in ASMDBUTMEF. For restoration, an unsymmet-
ric trimmed median filter is applied. As a result
ASMDBUTMF preserves fine anatomical details
in MRI images more effectively than DBA [8].
In fuzzy logic based filters fuzzy reasoning is
used to determine the level of noise corruption.
In AFMF, based on the detected noise level me-
dian median filtering is applied to eliminate
the noise [9]. Modified version TAT2FF detects
noise using an enhanced adaptive type-2 fuzzy
noise identifier. Moreover for restoration, it applies
a modified ordinary fuzzy logic approach [10]. For
High noise densities FEMF was implemented
which identifies natural pixels for restoration based
on prior information. It does not rely on iterative
noise detection. It is ideal for swift processing ap-
plications because of its simple logic and rapid
execution [11]. Morphological filters analyze the
geometric structure of images and combined with
statistical methods to improve denoising perfor-
mance. NHF integrates mathematical morphology
operations with a trimmed median filter [12].
Edge-Preserving and Detail-Aware Filters uses the
EATV model. Maintains the edge integrity while
reducing the noise level by applying the total varia-
tion denoising selectively [3, 13]. In regeneration
filter high-density SAPN is eliminated by selec-
tively processing noisy pixels. It maintains image
integrity by preserving uncorrupted pixels. RF works
in two phases: noise identification via adaptive
threshold and reconstruction using neighboring
pixels [14]. Researchers also used deep learning
based approaches to eliminate SAPN. Convolu-
tional Neural Networks (CNN) are trained to dis-
tinguish and eliminate noise patterns. Deep CNNs
with selective convolutional blocks can efficiently
minimize SAPN at high densities. These models
perform better by learning intricate mappings from
noisy to clean images. However, it requires signi-

Hayka
wrexHuka. T. 24, Ne 5 (2025)



Informatics

ficant computational resources and extensive trai-
ning datasets [5].

From the literature, it is concluded that re-
searchers have explored innovative strategies for
SAPN removal. A two-step method involving
a median-type filter followed by an adaptive non-
local bilateral filter has been proposed to address
the limitations of traditional filters. This approach
effectively weakens median filter errors and pre-
serves image details [13]. Additionally, methods
incorporating noise detection strategies with non-
convex sparsity regularization have shown promise
in accurately identifying and removing noise while
maintaining image integrity [15].

The evolution of SAPN removal techniques re-
flects a balance between noise suppression and
detail preservation. Traditional methods offer sim-
plicity and speed; however, they have limitations
in maintaining image quality at high noise levels.
On the other hand, adaptive, fuzzy logic-based, and
deep learning approaches provide enhanced per-
formance but may introduce complexity and com-
putational demands. Ongoing research continues to
seek methods that effectively combine efficiency
with high-quality denoising outcomes. The authors
have proposed the AWMMEF for SAPN elimi-
nation.

Methodology

From the literature, it is concluded that while
elimination of the SAPN at high noise density
SMF and AMF have limitations in maintaining the
balance between noise reduction and detail preser-
vation. To address these problems authors have
proposed AWMMEF which dynamically adjusts the
filtering process based on local noise density, as-
signing adaptive weights to the mean and median
values within a local window. In this study,
the authors have utilized standard grayscale test
images of Lena [16]. This image is artificially cor-
rupted with varying densities (10 to 90 %)
of SAPN to simulate real-world conditions.
The step-by-step procedure of the proposed
AWMMEF methodology is presented below:

Step 1: Noise Detection. For each pixel in
the image, define a sliding window cantered on
the current pixel.

Identify whether the current pixel is a noisy or
non-noisy candidate from its intensity (minimum
or maximum possible value).
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Step 2: Adaptive Window Adjustment. 1f the
current pixel is a noise candidate, initialize the
window size to a predefined minimum (e.g., 3%3).

Expand the window size incrementally (e.g.,
to 5x5, 7x7) until a sufficient number of non-noisy
pixels are found or a maximum window size is
reached.

Step 3: Weight Calculation. Within the deter-
mined window, calculate the median (Med) and
mean (Mean) of the non-noisy pixels.

Estimate the local noise density (p)

B noisy pixels
P~ tital number of pixels window

Compute the weighting factor (o) based on p,
where o = f{p) is a monotonically increasing func-
tion ensuring 0 <o < 1.

Step 4: Pixel Restoration. Replace the noisy
pixel's value (P) with a weighted combination of
the median and mean:

Pnew = a x Mean + (1 — o)) X Med.

If the current pixel is not noisy, retain its origi-
nal value.

Step 5: Iterative Processing. Repeat the above
steps for each pixel in the image until the entire
image is processed.

Results and Discussion

In this proposed work the AWMMEF algorithm
is written in a MATLAB environment and Intel
Core 15 processor and 16GB RAM system is used
for execution. To analyze the efficacy of the pro-
posed AWMMEF standard grayscale test images of
Leena are artificially corrupted with varying den-
sities (10 to 90 %) of SAPN to simulate real-world
conditions. The performance of the AWMMEF has
been compared with the seven existing filters AFMF,
FEMF, DAF, NHF, RF, IAT2FF, SeConvNet,
and ASMDBUTMF for the varying noise densi-
ties (10 to 90 %). The performance is compared
based on their Peak Signal-to-Noise Ratio (PSNR),
Mean Squared Error (MSE), and Structural Simi-
larity Index (SSIM) and the Image Enhancement
Factor (IEF). The detail discussion of the each per-
formance parameter is given below.
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Peak Signal-to-Noise Ratio (PSNR). PSNR
basically indicates the image quality and given by,

maximum possible power of a signal (1)

PSNR = power of noise

For better noise suppression PSNR of the filter
should be high [16]. The results obtained for PSNR
of all the filters considered in this study are given
in Table 1.

From Table 1 it is clear that AWMMEF consis-
tently yields the highest PSNR at every noise level.
This demonstrates that it retains image quality bet-
ter than other methods under increasing noise.

Fig. 1 shows the graph of PSNR for all the fil-
ters under study for the noise level 10 to 90. From
Fig. 1 it is observed that for the Deep Learning

Filters considered for this study i.e. SeConvNet
and IAT2FF the PSNR values remain constant and
low indicating that they are not well trained or not
suitable for the noise level considered for this
study. They are not performing well compared
to traditional filters and the proposed AWMME.
PSNR for NHF and RF declined steadily with
an increase in noise level. A low value of PSNR
indicates that they have poor noise suppression and
image restoration. From the graphs, it is found that
for lower noise levels (10 to 30) the performance
of the proposed AWMMEF is similar to FEMF,
AFMF, and ASMDBUTMF. However, for higher
noise levels the PSNR for other filters decreased
considerably compared to AWMMEF which proves
the superior performance and robustness of the
proposed AWMMEF at high noise densities.

Table 1
PSNR for filters under study for varying noise density
Noise AFMF FEMF DAF NHF RF IAT2FF | SeConvNet | ASMDBUTMF | AWMMF
10 35.39733 | 35.90229 | 31.75012 | 28.0879 29.76457 15.25033 15.25033 35.90229 35.94136
20 31.01415 | 32.05459 | 28.12879 | 22.28446 24.93479 12.21703 12.21703 32.05459 32.13226
30 27.71355 | 30.35453 | 23.2121 17.5408 21.9033 10.46196 10.46196 30.34921 30.46994
40 24.30438 | 28.91913 | 18.67052 | 13.98804 19.52521 9.209097 | 9.209097 28.87144 29.08077
50 21.17886 | 27.49012 | 15.01558 | 11.51263 17.56481 8.23075 8.23075 27.28456 27.66278
60 18.52804 | 26.61401 | 12.08999 | 9.713606 15.92049 7.436238 7.436238 25.74744 26.77853
70 16.32833 | 25.67214 | 9.865479 | 8.41461 14.53965 6.787401 6.787401 23.48028 25.81697
80 1429431 | 24.62507 | 7.955471 | 7.378486 13.22843 6.201846 | 6.201846 20.2284 24.75186
920 12.50589 | 23.06581 | 6.421403 | 6.494591 12.02737 5.673323 5.673323 16.50731 23.10802
40 T T T
o 25_ e o - I e -
Z . ——
%]
2o
20 T
15f~_
10f ——— -
5 | | | T B —
10 20 30 40 50 60 70 80 90
% Noise
Fig. 1. PSNR for varying noise density
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4.2. Mean Squared Error (MSE). MSE indi-
cates the denoising capability of the filter and is
given by

1 H W
MSE = s 22(0@ =D j))z, )

i=1 j=1
where H and W are the height and width of
the image respectively.

0@, j) and D(i, j) are the pixel value of
the original and denoised images at position (i, j)
respectively.

For superior denoising performance the filters
should have minimum MSE [17]. Table 2 presents
the MSE for all filters considered for this study at
various noise densities. From the Table 2, it is con-

cluded that MSE for AWMMF is the lowest com-
pared to all the filters for all the noise densities
proving the accuracy of the proposed AWMMEF.
Fig. 2 shows the graph of MSE for all filters with
varying noise densities.

From Fig. 2 it is observed that MSE for DAF,
NHF, IAT2FF, and SeConvNet is highest for all
noise densities resulting in the filters being less
accurate. AFMF and RF perform moderately be-
low 40 % noise levels however their stability is not
strong at higher noise densities. For low noise den-
sities MSE for ASMDBUTMF and FEMF is quite
similar to AWMMF but as the noise density
increases the MSE also increases drastically com-
pared to the proposed AWMMEF.

Table 2
MSE for filters under study for varying noise density
Noise AFMF FEMF DAF NHF RF IAT2FF | SeConvNet | ASMDBUTMF | AWMMF
10 18.76495 | 16.70517 | 43.45785 | 100.9927 | 68.64732 | 1941.097 1941.097 16.70517 16.55559
20 51.48322 | 40.51554 | 100.0463 | 384.2679 | 208.7379 | 3902.813 3902.813 40.51554 39.79739
30 110.0843 | 59.92761 | 310.3636 | 1145.514 | 419.5179 | 5846.344 5846.344 60.00106 58.35608
40 241.3473 | 83.40019 | 883.1375 | 2595.83 | 725.3691 | 7801.366 | 7801.366 84.32107 80.35318
50 495.6717 | 115.896 | 2048.907 | 4590.054 | 1139.199 | 9772.493 9772.493 121.5135 111.3787
60 912.5915 | 141.8012 | 4018.665 6945.76 1663.534 | 11734.28 11734.28 173.1155 136.5299
70 1514.424 | 176.1435 | 6707.064 | 9367.406 | 2286.207 | 13625.12 13625.12 291.7779 170.366
80 2419.077 | 224.1679 | 10411.98 | 11891.37 | 3091.983 | 15591.78 15591.78 616.9362 217.7182
90 3651.667 | 320.9955 | 14823.13 | 14575.43 | 4077.023 | 17609.54 17609.54 1453.28 317.8909
9000, — % ' ~] ) '
7000] == A A~
6000 .
& 5000~ =
= 4000 {,— g e . -
3000 ’,, ’ S g 7 -
2000~ : l
1000 - -
{}0—_-_ 20 m3€ ) :_:-4-(; ______ 5 E) 60 ) 70 8IO 90
% Noise
Fig. 2. MSE Comparison of different filters across noise density
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Structural Similarity Index (SSIM). SSIM
represents the restoration capability of the filters
and is given by

Cuon, +C)(20,, +C,)
(Mo +1p +C)(op +05, +C)

SSIM (O, D)= 3)

where p,, 1, — mean intensity of original image O
and denoised image D respectively; o, 6}, — va-
riance of original image O and denoised image D
respectively; o,, — covariance between original
image O and denoised image D; C,, C, — small con-
stant to stabilize the division.

The filters with better image restoration quality
has SSIM near to unity [17]. Table 3 shows the
comparison of SSIM for all filters under study for
the varying noise density. From Table 3 it is con-
cluded that SSIM for AWMMEF at low noise densi-

ty is 0.97872 and 0.731431 at highest noise densi-
ty indicating the consistency of the proposed
AWMMEF compared to other filters under study.

From Fig. 3 it is found that IAT2FF and
SeConvNet are having very low SSIM for all noise
density levels. It suggests that these models fail to
preserve the image details under SAPN. SSIM for
DAF, NHF, and RF decreases with an increase
in noise density indicating the poor performance
in maintaining the quality of the image. From
the graph, it is observed that FEMF and AFMF
perform well for the noise densities below 30 % ho-
wever the SSIM drops down drastically as the noise
density increases. The SSIM for ASMDBUTMF
and proposed AWMMEF is almost equal at low
noise densities but it falls to 0.327303 at 90 %
noise level for ASMDBUTMEF. This proves that
the proposed AWMMEF preserves the image details
at all noise densities.

Table 3
SSIM for filters under study for varying noise density
Noise | AFMF FEMF DAF NHF RF IAT2FF | SeConvNet | ASMDBUTMF | AWMMF
10 0.975364 | 0.978548 | 0.902207 | 0.858706 | 0.791894 | 0.18369 0.18369 0.978548 0.97872
20 0.939636 | 0.958276 | 0.852765 | 0.706201 | 0.589516 | 0.090043 0.090043 0.958276 0.95903
30 0.861298 | 0.940857 | 0.704129 | 0.466918 | 0.434423 | 0.055817 0.055817 0.940685 0.942549
40 0.706129 | 0.921426 | 0.456839 | 0.264999 0.3202 0.038711 0.038711 0.919215 0.924624
50 0.510069 | 0.898153 | 0.236385 | 0.155046 | 0.237748 | 0.027057 0.027057 0.885013 0.902765
60 0.330928 | 0.873117 | 0.11035 | 0.089764 | 0.177746 | 0.019458 0.019458 0.810986 0.878218
70 0.206861 | 0.842543 | 0.054127 0.0533 0.130361 | 0.013836 0.013836 0.683534 0.847725
80 0.128468 0.8015 0.02784 | 0.030233 | 0.09595 | 0.010235 0.010235 0.497628 0.806353
90 0.074095 | 0.729509 | 0.012057 | 0.01353 | 0.062018 | 0.005928 0.005928 0.327303 0.731431
1’0_ e _-I_ AFMF FEME JERY NHF BE IATZFE — — SelomNet AEI\II’I!I!I.‘]] = =AWMMF
0,9- N B “"--—-u-.-,ﬂ_l,,__’_‘uw, i
0.8 ) e
07 " N |
0,6+ - - =
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Fig. 3. SSIM of all filters with varying noise density
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Image Enhancement Factor (IEF). The effi-
cacy of the image enhancement or restoration algo-
rithm is also evaluated by IEF which is a quantitative
metric. The Image Enhancement Factor quantifies
how much an enhanced image improves over a noisy
or degraded image, in relation to the original image.
It is calculated as follows:

33 (i, ) - 0. )))?
IEF =—=

m 7

DG ) =03, )

i=l j=1

“

where O(i, j) is the original image; x(i, j) is the Noisy
image; (i, j) is the filtered image.

Table 4 shows the comparison of IEF for all fil-
ters under study for the noise density range from 10
to 90. Higher value of IEF means better enhance-
ment of the image. From the Table 4 it is conclude

that for AWMMEF the value of IEF is highest for all
the noise levels compared to all filters.

Fig. 4 shows the comparison of the graph of IEF
of all filters with varying noise densities. From the
Fig. 4 it is conclude that in case of traditional filters
like NHF and RF for low noise densities image
enhancement is good but for higher noise level the
image is degraded. On the other hand for IAT2FF,
the IEF is constant 1 for all noise densities which
means that the image enhancement is negligible.
While comparing the IEF value for SeConvNet it
is observed that it is consistently remain below 2,
indicating either inadequate generalization, inefficient
training, or restricted tolerance to salt-and-pepper
noise in this particular situation. At low noise level
AFMF and ASMDBUTMF performs well however
with increase in the noise level the IEF value de-
creases. The FEMF and AWMMEF perform similarly,
while the AWMMEF has the greater IEF.

Table 4
IEF for filters under study for varying noise density
Noise | AFMF FEMF DAF NHF RF IAT2FF | SeConvNet | ASMDBUTMF | AWMMF
10 98.86405 | 113.8041 | 43.61288 | 18.39216 | 27.9361 1 0.913798 113.8041 114.7465
20 81.71998 | 107.0806 | 39.70718 | 10.50791 | 18.98984 1 1.39623 107.0806 108.9917
30 52.08079 | 96.79249 | 18.56904 | 5.099624 | 13.90591 1 1.715288 96.72941 99.77455
40 33.54832 | 93.31618 | 9.127153 | 3.087682 | 10.8069 1 1.875194 92.69405 96.74793
50 20.40314 | 84.99859 | 4.892097 | 2.182304 | 8.696367 1 2.08473 81.42757 88.56061
60 12.88907 | 83.06283 | 2.933908 | 1.694546 | 7.038211 1 1.569965 68.16943 86.52421
70 8.93947 | 78.02919 | 2.012163 | 1.453138 | 5.924151 1 1.759722 45.86859 80.70468
80 6.455024 | 68.19781 1.5037 1.31052 | 5.049117 1 1.901367 25.10251 70.12437
90 4.850621 | 53.51262 | 1.193024 | 1.210347 | 4.341645 1 1.848439 12.11493 54.10665
Lop—— 1 1 [ ATHF —FEMF — DA —MIF ——RF  IATIFT — SeComet — ASMDEUTMF — —AWMME]
08 s e
0,71 - 3
0,61 \ -
& 0,5 \
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Fig. 4. IEF of all filters with varying noise density
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Fig. 5 shows the input image, noisy image, and
output images of all the filters considered for this
study with various noise densities. From Fig. 4 it is
observed that Traditional filters (AFMF, FEMF)
perform well at low noise and perform poorly
at high noise. DAF, NHF, and RF perform poor-
ly at even medium noise with lots of blur-
ring. For IAT2FF, SeConvNet the performance
is very poor at all noise levels. ASMDBUTMF
performs decent to moderate noise levels but the
performance is degraded at high noise levels.

The proposed AWMMEF performs well at all noise
levels.

From the above comparative analysis for various
parameters of all the filters, it is clear that the pro-
posed AWMMEF outperforms traditional denoising
methods across various noise densities. The adaptive
weighting mechanism allows AWMMEF to effectively
balance noise reduction and detail preservation.
While SMF and AMF are effective at lower noise
densities, their performance degrades significantly as
noise density increases.

Noise
Noisy
AFMF
FEMF
DAF

IAT2FF
SeConvNet

' “g Original

20

J ASMDBUTMF

30

40

50

60

70

80

920

Fig. 5. Visual performance of AWMMEF compared to other filters under study
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DBA shows improved performance over SMF
and AMF but still falls short compared to
AWMMEF, especially at higher noise levels.
The superior performance of AWMMEF can be
attributed to its adaptive nature, which adjusts
the filtering parameters based on local noise chara-
cterristics. This adaptability enables AWMMEF to
maintain high image quality even under challeng-
ing conditions. The AWMMEF offers several ad-
vantages over conventional filters such as adaptive
nature of the filter effectively handles varying
noise densities. It maintain the balance between
noise reduction and image detail Preservation be-
cause of use of mean and median values. The itera-
tive approach and dynamic adjustments make the
filter robust against high-density noise scenarios,
where traditional filters often fail.

Conclusion

In this article, we have proposed the AWMMEF
filtering for eliminating the SAPN effectively noise
in digital images. Moreover, the PSNR, MSE,
and SSIM of AWMMEF compared with the seven
state-of-the-art filters using the benchmark Leena
image at varying noise density from 10% to 90%.
From the comparative analysis it is found that
the AWMMEF ensured superior noise reduction
while maintaining image details, making it a robust
and efficient choice for image restoration tasks.

The novelity of Key findings include as follo-
wing:

o AWMMEF consistently achieved higher PSNR
values and lower MSE across all noise densities.

e The proposed AWMMEF exhibited superior
SSIM performance, indicating better structural
preservation and visual quality.

e Unlike conventional methods, AWMMEF dy-
namically adjusted its filtering strategy based on
local noise density, providing enhanced adaptabi-
lity to varying noise levels.

These results highlight AWMME's effective-
ness in medical imaging, remote sensing, and sur-
veillance, where high-quality image restoration is
critical. The future work could integrate AWMMF
with deep learning models to enhance the perfor-
mance and explore the effectiveness of AWMMEF
with other types of noises such as Gaussian, speck-

Hayka
wrexHuka. T. 24, Ne 5 (2025)

le, and Poisson noise, expanding its versatility
across imaging domains.
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Nomenclature

AWMMF Adaptive Weighted Mean-
Median Filter

SMF Standard Median Filter

AMF Adaptive Median Filter

RF Regeneration Filter

NHF Nonlinear Hybrid Filter

EATV Edge-Adaptive Total Variation

DAF Detail-Aware Filter

AFMF Adaptive Fuzzy Median Filter

IAT2FF Improved Adaptive Type-2
Fuzzy Filter

SeConvNet Deep Convolutional Neural
Network

FEMF Fast and Efficient Median Filter

ASMDBUTMF Adaptive Switching Modified
Decision-Based Unsymmetric
Trimmed Median Filter

PSNR Peak Signal-to-Noise Ratio

MSE Mean Squared Error

SSIM Structural Similarity Index

IEF Image Enhancement Factor
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