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Abstract. The primary challenge with image processing applications in automated surveillance, medical, and remote sensing 
is image denoising. Salt-and-pepper noise (SAPN) drastically reduces image quality by randomly changing pixel values with 
high intensities. At higher noise densities, the fundamental challenge for conventional filtering algorithms is to balance noise 
suppression and detail retention. In digital image processing applications accuracy is very important. However, during captu- 
ring and transmission, the images are exposed to various noise frequently. In this research article, an Adaptive Weighted 
Mean-Median Filter (AWMMF) is proposed for robust Salt-and-Pepper Noise Removal Technique. In the proposed work the 
filtering window size is dynamically adjusted according to the local noise density. AWMMF integrates a weighted combina-
tion of mean and median values to enhance restoration quality while preserving image details. The efficacy of the proposed 
algorithm is evaluated on standard benchmark Lena image and compared with existing denoising techniques like Adaptive 
Fuzzy Median Filter, Fast and Efficient Median Filter, Nonlinear Hybrid Filter, Improved Adaptive Type-2 Fuzzy Filter,  
Regeneration Filter, Deep Convolutional Neural Network and Adaptive Switching Modified Decision-Based Unsymmetric 
Trimmed Median Filter. For the performance analysis, the parameters considered are the Peak Signal-to-Noise Ratio, Mean 
Squared Error, Structural Similarity Index and Image Enhancement Factor. AWMMF provides a robust and computationally 
efficient solution for SAPN removal, making it suitable for real-world image processing applications.  
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Реферат. Основной проблемой обработки изображений в системах автоматизированного наблюдения, медицины и 
дистанционного зондирования является устранение шума на изображениях. Шум типа «соль и перец» (Salt-and-pepper 
noise – SAPN) существенно снижает качество изображения по причине случайного и интенсивного изменения значе-
ний пикселей. При более высоких плотностях шума основной проблемой традиционных алгоритмов фильтрации ста-
новится поиск баланса между подавлением шума и сохранением деталей сигнала. При цифровой обработке изобра-
жений точность проводимых операций очень важна. Однако во время съемки и передачи изображений они часто  
подвергаются воздействию различных шумов. В данной исследовательской статье предлагается использовать адап-
тивный взвешенный среднемедианный фильтр (Adaptive Weighted Mean-Median Filter – AWMMF), который обеспечива-
ет надежное применение метода, предназначенного для удаления шума типа «соль и перец». Размер окна фильтрации 
динамически регулируется в зависимости от локальной плотности шума. Адаптивный взвешенный среднемедианный  
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фильтр объединяет взвешенную комбинацию средних и медианных значений для обеспечения улучшения качества 
восстановления, сохраняя при этом детали изображения. Эффективность предлагаемого алгоритма оценивается на 
стандартном эталонном изображении Lena и сравнивается с такими существующими методами шумоподавления, как 
адаптивный нечеткий медианный фильтр, быстрый и эффективный медианный фильтр, нелинейный гибридный 
фильтр, улучшенный адаптивный нечеткий фильтр типа 2, фильтр регенерации, глубокая сверточная сеть и адаптив-
ный коммутационный модифицированный несимметричный усеченный медианный фильтр на основе принятия реше-
ний.  При анализе качества работы предлагаемого метода учитываются следующие параметры: пиковое отношение сиг-
нала, среднеквадратичная ошибка, индекс структурного сходства и коэффициент улучшения изображения. Адаптивный 
взвешенный среднемедианный фильтр обеспечивает надежное и эффективное решение для удаления шума типа «соль и 
перец», что позволяет использовать его для реальных приложений обработки изображений.  
 

Ключевые слова:  адаптивная фильтрация, шумоподавление изображения, коэффициент улучшения изображения, 
среднеквадратичная ошибка, шум типа «соль и перец» 
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Introduction 
 

In Image denoising is the major issue in the ap-
plications of image processing in the fields of re-
mote sensing, medical, and automated surveillance. 
The salt-and-pepper noise (SAPN) is one of the 
noises that significantly degrades image quality by 
randomly replacing pixel values with extreme  
intensities. In conventional filtering techniques,  
the main problem is to balance noise suppression 
and detail preservation, at higher noise densities. 

Moreover, in the digital image processing do-
main, the accuracy of visual data is very important. 
However, during capturing and transmission, pic-
tures are frequently vulnerable to several kinds of 
noise. Salt-and-pepper noise (SAPN) is a common 
type of impulsive noise in the form of random 
black-and-white pixels, which considerably dimin-
ishes image quality and affects subsequent image 
evaluation processes. Effective removal of SAPN 
is, therefore, a critical endeavor in enhancing  
image fidelity. 

Conventional denoising techniques, such as the 
Standard Median Filter (SMF), have been widely 
employed due to their simplicity and effectiveness 
in low noise densities. To effectively eliminate the 
noise candidate the SMF replaces each pixel's va- 
lue with the median value of the intensities in its 
neighborhood. However, its performance deterio-
rates at higher noise levels, leading to blurring and 
loss of vital image details [1]. In the modified ver-
sion of SMF the size of the filtering window is dy-
namically adjusted based on local noise density, 
aiming to preserve edges while removing noise. 
Despite its adaptive nature, the AMF can result in 
excessive smoothing, especially in images with 
high-density   noise,   thereby   compromising  edge  

and detail preservation [2]. Recent advancements 
have seen the emergence of sophisticated methods 
that blend traditional filtering techniques with 
modern computational approaches. For instance, 
the Edge-Adaptive Total Variation (EATV) model 
segments images into edge and non-edge regions, 
applying total variation denoising selectively to 
maintain edge integrity while suppressing noise. 
This method has demonstrated improved perfor-
mance in balancing noise reduction and detail 
preservation [3]. Another notable approach is the 
Detail-Aware Filter (DAF), which combines medi-
an filtering with an adaptive non-local means filter. 
This hybrid technique effectively reduces noise 
while retaining intricate image details, outperform- 
ming traditional methods in various scenarios [4]. 
In the realm of high-density noise conditions, the 
Nonlinear Hybrid Filter (NHF) has been proposed. 
This filter integrates mathematical morphology 
operations with a trimmed median filter, enhancing 
robustness against noise while preserving essential 
image features [1]. The Regeneration Filter (RF) 
offers a different strategy by selectively processing 
noisy pixels based on local context, thereby pre-
serving structural details even in heavily corrupted 
images [2]. Fuzzy logic-based methods have  
also gained traction, with the Improved Adaptive 
Type-2 Fuzzy Filter (IAT2FF) employing type-2 
fuzzy logic to distinguish between noisy and noise-
free pixels. This approach ensures precise noise 
removal while maintaining image integrity [3].  
The advent of deep learning has further revolution- 
nized denoising techniques. The Deep Convolu-
tional Neural Network (SeConvNet) utilizes selec-
tive convolutional blocks to effectively reduce 
SAPN, particularly at high noise densities, show-
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casing the potential of neural networks in image 
restoration tasks [5]. 

Even with these advancement in noise elimina-
tion of digital images maintaining the optimal ba- 
lance between noise reduction and detail preserva-
tion across varying noise densities is one of the 
challenge to researchers. 

In this research article the authors have pro-
posed a novel Adaptive Weighted Mean-Median 
Filter (AWMMF) that dynamically assigns weights 
to mean and median values within a local window, 
based on estimated noise density. The AWMMF 
aims to enhance denoising performance while pre-
serving critical image details, addressing the short-
comings of existing methods. This research article 
contributes: 

 A discussion on the various filtering methods 
to eliminate the SAPN. 

 A discussion on the implementation of 
AWMMF for SAPN elimination. 

 A discussion on the superior effectiveness of 
AWMMF for SAPN elimination over other filters 
such as Adaptive Fuzzy Median Filter (AFMF), 
Fast and Efficient Median Filter (FEMF), DAF, 
NHF, IAT2FF, RF, SeConvNet, and Adaptive 
Switching Modified Decision-Based Unsymmetric 
Trimmed Median Filter (ASMDBUTMF). 

The article is structured as follows: Literature 
review followed by introduction is presented in 
Section 2. The proposed algorithm of AWMMF is 
elaborated in Section 3. Results and discussion are 
presented in Section 4 followed by the Conclusion.  

 

Literature Review 
 

In the field of digital image processing elimina-
tion of SAPN is the biggest challenge and many 
researchers are working on that. From the litera-
ture, it is concluded that over the past decade, nu-
merous methodologies have been proposed, inclu- 
ding conventional median filtering techniques, and 
advanced adaptive and hybrid models. In conven-
tional filters like SMF, the value of each pixel is 
replaced with the median of the intensities within  
a defined neighborhood. It is more effective for 
low-noise density however tends to blur the image 
at higher noise levels. A modified version of SMF 
is an adaptive Median Filter (AMF) which adjusts 
window size based on local noise density. AMF 
can result in excessive smoothing, especially in 

images with significant noise [6]. Another type of 
filter used to eliminate SAPN is decision-based 
and switching filters (DBA).  It replaces noisy  
pixels using neighboring values but may cause  
artifacts at high noise levels. In its modified ver-
sion decision-based unsymmetric trimmed median 
filter the performance is improved by a trimming 
process in high-noise conditions [7]. Further  
the performance is enhanced by using adaptive 
threshold mechanism for detecting noisy pixels  
in ASMDBUTMF. For restoration, an unsymmet-
ric trimmed median filter is applied. As a result 
ASMDBUTMF preserves fine anatomical details 
in MRI images more effectively than DBA [8].  
In fuzzy logic based filters fuzzy reasoning is  
used to determine the level of noise corruption.  
In AFMF, based on the detected noise level me- 
dian median filtering is applied to eliminate  
the noise [9]. Modified version IAT2FF detects 
noise using an enhanced adaptive type-2 fuzzy 
noise identifier. Moreover for restoration, it applies 
a modified ordinary fuzzy logic approach [10]. For 
High noise densities FEMF was implemented 
which identifies natural pixels for restoration based 
on prior information. It does not rely on iterative 
noise detection. It is ideal for swift processing ap-
plications because of its simple logic and rapid 
execution [11]. Morphological filters analyze the 
geometric structure of images and combined with 
statistical methods to improve denoising perfor-
mance. NHF integrates mathematical morphology 
operations with a trimmed median filter [12]. 
Edge-Preserving and Detail-Aware Filters uses the 
EATV model. Maintains the edge integrity while 
reducing the noise level by applying the total varia-
tion denoising selectively [3, 13]. In regeneration 
filter high-density SAPN is eliminated by selec-
tively processing noisy pixels. It maintains image 
integrity by preserving uncorrupted pixels. RF works 
in two phases: noise identification via adaptive 
threshold and reconstruction using neighboring 
pixels [14]. Researchers also used deep learning 
based approaches to eliminate SAPN. Convolu-
tional Neural Networks (CNN) are trained to dis-
tinguish and eliminate noise patterns. Deep CNNs 
with selective convolutional blocks can efficiently 
minimize SAPN at high densities. These models 
perform better by learning intricate mappings from 
noisy to clean  images.  However, it requires  signi- 
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ficant computational resources and extensive trai- 
ning datasets [5]. 

From the literature, it is concluded that re-
searchers have explored innovative strategies for 
SAPN removal. A two-step method involving  
a median-type filter followed by an adaptive non-
local bilateral filter has been proposed to address 
the limitations of traditional filters. This approach 
effectively weakens median filter errors and pre-
serves image details [13]. Additionally, methods 
incorporating noise detection strategies with non-
convex sparsity regularization have shown promise 
in accurately identifying and removing noise while 
maintaining image integrity [15]. 

The evolution of SAPN removal techniques re-
flects a balance between noise suppression and 
detail preservation. Traditional methods offer sim-
plicity and speed; however, they have limitations 
in maintaining image quality at high noise levels. 
On the other hand, adaptive, fuzzy logic-based, and 
deep learning approaches provide enhanced per-
formance but may introduce complexity and com-
putational demands. Ongoing research continues to 
seek methods that effectively combine efficiency 
with high-quality denoising outcomes. The authors 
have proposed the AWMMF for SAPN elimi- 
nation.    

 
Methodology 
 

From the literature, it is concluded that while 
elimination of the SAPN at high noise density 
SMF and AMF have limitations in maintaining the 
balance between noise reduction and detail preser-
vation. To address these problems authors have 
proposed AWMMF which dynamically adjusts the 
filtering process based on local noise density, as-
signing adaptive weights to the mean and median 
values within a local window. In this study,  
the authors have utilized standard grayscale test 
images of Lena [16]. This image is artificially cor-
rupted with varying densities (10 to 90 %)  
of SAPN to simulate real-world conditions.  
The step-by-step procedure of the proposed 
AWMMF methodology is presented below:  

Step 1: Noise Detection. For each pixel in  
the image, define a sliding window cantered on  
the current pixel. 

Identify whether the current pixel is a noisy or 
non-noisy candidate from its intensity (minimum 
or maximum possible value). 

Step 2: Adaptive Window Adjustment. If the 
current pixel is a noise candidate, initialize the 
window size to a predefined minimum (e.g., 3×3). 

Expand the window size incrementally (e.g.,  
to 5×5, 7×7) until a sufficient number of non-noisy 
pixels are found or a maximum window size is 
reached. 

Step 3: Weight Calculation. Within the deter-
mined window, calculate the median (Med) and 
mean (Mean) of the non-noisy pixels. 

Estimate the local noise density () 
 

                          noisy pixels 
  tital number of pixels window 

 

Compute the weighting factor (α) based on ρ, 
where  = f(ρ) is a monotonically increasing func-
tion ensuring 0 ≤  ≤ 1. 

Step 4: Pixel Restoration. Replace the noisy 
pixel's value (P) with a weighted combination of 
the median and mean:  

 

Pnew =  × Mean + (1 − ) × Med. 
 

If the current pixel is not noisy, retain its origi-
nal value. 

Step 5: Iterative Processing. Repeat the above 
steps for each pixel in the image until the entire 
image is processed. 

 
Results and Discussion  
 
In this proposed work the AWMMF algorithm 

is written in a MATLAB environment and Intel 
Core i5 processor and 16GB RAM system is used 
for execution. To analyze the efficacy of the pro-
posed AWMMF standard grayscale test images of 
Leena are artificially corrupted with varying den- 
sities (10 to 90 %) of SAPN to simulate real-world 
conditions. The performance of the AWMMF has 
been compared with the seven existing filters AFMF, 
FEMF, DAF, NHF, RF, IAT2FF, SeConvNet,  
and ASMDBUTMF for the varying noise densi- 
ties (10 to 90 %). The performance is compared 
based on their Peak Signal-to-Noise Ratio (PSNR), 
Mean Squared Error (MSE), and Structural Simi-
larity Index (SSIM) and the Image Enhancement 
Factor (IEF). The detail discussion of the each per-
formance parameter is given below. 

 = .
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Peak Signal-to-Noise Ratio (PSNR). PSNR 
basically indicates the image quality and given by,   

 

         maximum possible power of a signal         
power of noise 

 
For better noise suppression PSNR of the filter 

should be high [16]. The results obtained for PSNR 
of all the filters considered in this study are given 
in Table 1.  

From Table 1 it is clear that AWMMF consis- 
tently yields the highest PSNR at every noise level. 
This demonstrates that it retains image quality bet-
ter than other methods under increasing noise. 

Fig. 1 shows the graph of PSNR for all the fil-
ters under study for the noise level 10 to 90. From  
Fig. 1  it  is  observed   that  for  the Deep Learning 

Filters considered for this study i.e. SeConvNet 
and IAT2FF the PSNR values remain constant and 
low indicating that they are not well trained or not 
suitable for the noise level considered for this 
study. They are not performing well compared  
to traditional filters and the proposed AWMMF.  

PSNR for NHF and RF declined steadily with 
an increase in noise level. A low value of PSNR 
indicates that they have poor noise suppression and 
image restoration. From the graphs, it is found that 
for lower noise levels (10 to 30) the performance 
of the proposed AWMMF is similar to FEMF, 
AFMF, and ASMDBUTMF. However, for higher 
noise levels the PSNR for other filters decreased 
considerably compared to AWMMF which proves 
the superior performance and robustness of the 
proposed AWMMF at high noise densities. 

 
Table 1 

PSNR for filters under study for varying noise density 
 

 

 
                           10                20               30               40                50               60               70               80               90 

% Noise 
 

Fig. 1. PSNR for varying noise density  

Noise AFMF FEMF DAF NHF RF IAT2FF SeConvNet ASMDBUTMF AWMMF 

10 35.39733 35.90229 31.75012 28.0879 29.76457 15.25033 15.25033 35.90229 35.94136 

20 31.01415 32.05459 28.12879 22.28446 24.93479 12.21703 12.21703 32.05459 32.13226 

30 27.71355 30.35453 23.2121 17.5408 21.9033 10.46196 10.46196 30.34921 30.46994 

40 24.30438 28.91913 18.67052 13.98804 19.52521 9.209097 9.209097 28.87144 29.08077 

50 21.17886 27.49012 15.01558 11.51263 17.56481 8.23075 8.23075 27.28456 27.66278 

60 18.52804 26.61401 12.08999 9.713606 15.92049 7.436238 7.436238 25.74744 26.77853 

70 16.32833 25.67214 9.865479 8.41461 14.53965 6.787401 6.787401 23.48028 25.81697 

80 14.29431 24.62507 7.955471 7.378486 13.22843 6.201846 6.201846 20.2284 24.75186 

90 12.50589 23.06581 6.421403 6.494591 12.02737 5.673323 5.673323 16.50731 23.10802 

PSNR = . (1)
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4.2. Mean Squared Error (MSE). MSE indi-
cates the denoising capability of the filter and is 
given by 

 

2
( , ) ( , )

1 1

1
( ) ,

H W

i j i j
i j

MSE O D
HW  

          (2) 

 

where H and W are the height and width of  
the image respectively. 

O(i, j) and D(i, j) are the pixel value of  
the original and denoised images at position (i, j) 
respectively. 

For superior denoising performance the filters 
should have minimum MSE [17]. Table 2 presents 
the MSE for all filters considered for this study at 
various noise densities. From the Table 2, it is con-

cluded that MSE for AWMMF is the lowest com-
pared to all the filters for all the noise densities 
proving the accuracy of the proposed AWMMF. 
Fig. 2 shows the graph of MSE for all filters with 
varying noise densities. 

From Fig. 2 it is observed that MSE for DAF, 
NHF, IAT2FF, and SeConvNet is highest for all 
noise densities resulting in the filters being less 
accurate. AFMF and RF perform moderately be-
low 40 % noise levels however their stability is not 
strong at higher noise densities. For low noise den-
sities MSE for ASMDBUTMF and FEMF is quite 
similar to AWMMF but as the noise density  
increases the MSE also increases drastically com-
pared to the proposed AWMMF. 

 
Table 2 

MSE for filters under study for varying noise density 
 

Noise AFMF FEMF DAF NHF RF IAT2FF SeConvNet ASMDBUTMF AWMMF 

10 18.76495 16.70517 43.45785 100.9927 68.64732 1941.097 1941.097 16.70517 16.55559 

20 51.48322 40.51554 100.0463 384.2679 208.7379 3902.813 3902.813 40.51554 39.79739 

30 110.0843 59.92761 310.3636 1145.514 419.5179 5846.344 5846.344 60.00106 58.35608 

40 241.3473 83.40019 883.1375 2595.83 725.3691 7801.366 7801.366 84.32107 80.35318 

50 495.6717 115.896 2048.907 4590.054 1139.199 9772.493 9772.493 121.5135 111.3787 

60 912.5915 141.8012 4018.665 6945.76 1663.534 11734.28 11734.28 173.1155 136.5299 

70 1514.424 176.1435 6707.064 9367.406 2286.207 13625.12 13625.12 291.7779 170.366 

80 2419.077 224.1679 10411.98 11891.37 3091.983 15591.78 15591.78 616.9362 217.7182 

90 3651.667 320.9955 14823.13 14575.43 4077.023 17609.54 17609.54 1453.28 317.8909 

 

 
                          10               20               30              40               50              60               70               80              90 

% Noise 
 

Fig. 2. MSE Comparison of different filters across noise density  
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Structural Similarity Index (SSIM). SSIM 
represents the restoration capability of the filters 
and is given by 

 

1 2
2 2 2 2

1 2

(2 )(2 )
( , ) ,

( )( )
O D OD

O D O D

C C
SSIM O D

C C

    


     
  (3) 

 

where O, D – mean intensity of original image O 

and denoised image D respectively; 2 2,O D   – va- 

riance of original image O and denoised image D 
respectively; OD – covariance between original 
image O and denoised image D; C1, C2 – small con-
stant to stabilize the division. 

The filters with better image restoration quality 
has SSIM near to unity [17]. Table 3 shows the 
comparison of SSIM for all filters under study for 
the varying noise density. From Table 3 it is con-
cluded that SSIM for AWMMF at low noise  densi- 

ty is 0.97872 and 0.731431 at highest noise densi- 
ty indicating the consistency of the proposed 
AWMMF compared to other filters under study. 

From Fig. 3 it is found that IAT2FF and 
SeConvNet are having very low SSIM for all noise 
density levels. It suggests that these models fail to 
preserve the image details under SAPN. SSIM for 
DAF, NHF, and RF decreases with an increase  
in noise density indicating the poor performance  
in maintaining the quality of the image. From  
the graph, it is observed that FEMF and AFMF 
perform well for the noise densities below 30 % ho- 
wever the SSIM drops down drastically as the noise 
density increases. The SSIM for ASMDBUTMF  
and proposed AWMMF is almost equal at low 
noise densities but it falls to 0.327303 at 90 % 
noise level for ASMDBUTMF. This proves that 
the proposed AWMMF preserves the image details 
at all noise densities. 

 

Table 3 
SSIM for filters under study for varying noise density 

 

Noise AFMF FEMF DAF NHF RF IAT2FF SeConvNet ASMDBUTMF AWMMF 

10 0.975364 0.978548 0.902207 0.858706 0.791894 0.18369 0.18369 0.978548 0.97872 

20 0.939636 0.958276 0.852765 0.706201 0.589516 0.090043 0.090043 0.958276 0.95903 

30 0.861298 0.940857 0.704129 0.466918 0.434423 0.055817 0.055817 0.940685 0.942549 

40 0.706129 0.921426 0.456839 0.264999 0.3202 0.038711 0.038711 0.919215 0.924624 

50 0.510069 0.898153 0.236385 0.155046 0.237748 0.027057 0.027057 0.885013 0.902765 

60 0.330928 0.873117 0.11035 0.089764 0.177746 0.019458 0.019458 0.810986 0.878218 

70 0.206861 0.842543 0.054127 0.0533 0.130361 0.013836 0.013836 0.683534 0.847725 

80 0.128468 0.8015 0.02784 0.030233 0.09595 0.010235 0.010235 0.497628 0.806353 

90 0.074095 0.729509 0.012057 0.01353 0.062018 0.005928 0.005928 0.327303 0.731431 
 

  
                             10              20                30               40               50                60                70               80                90 

% Noise 
 

Fig. 3. SSIM of all filters with varying noise density 
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Image Enhancement Factor (IEF). The effi-
cacy of the image enhancement or restoration algo-
rithm is also evaluated by IEF which is a quantitative 
metric. The Image Enhancement Factor quantifies 
how much an enhanced image improves over a noisy 
or degraded image, in relation to the original image. 
It is calculated as follows: 

 

          

2

1 1

2

1 1

( ( , ) ( , ))

,
( ( , ) ( , ))

m n

i j

m n

i j

x i j O i j

IEF
f i j O i j

 

 









   (4) 

 

where O(i, j)  is the original image; x(i, j) is the Noisy 
image;  f(i, j) is the filtered image. 

Table 4 shows the comparison of IEF for all fil-
ters under study for the noise density range from 10 
to 90. Higher value of IEF means better enhance-
ment of the image. From the Table 4 it is conclude 

that for AWMMF the value of IEF is highest for all 
the noise levels compared to all filters. 

Fig. 4 shows the comparison of the graph of IEF 
of all filters with varying noise densities. From the 
Fig. 4 it is conclude that in case of traditional filters 
like NHF and RF for low noise densities image  
enhancement is good but for higher noise level the 
image is degraded. On the other hand for IAT2FF, 
the IEF is constant 1 for all noise densities which 
means that the image enhancement is negligible. 
While comparing the IEF value for SeConvNet it  
is observed that it is consistently remain below 2, 
indicating either inadequate generalization, inefficient 
training, or restricted tolerance to salt-and-pepper 
noise in this particular situation. At low noise level 
AFMF and ASMDBUTMF performs well however 
with increase in the noise level the IEF value de-
creases. The FEMF and AWMMF perform similarly, 
while the AWMMF has the greater IEF. 

Table 4 
IEF for filters under study for varying noise density 

 

Noise AFMF FEMF DAF NHF RF IAT2FF SeConvNet ASMDBUTMF AWMMF 

10 98.86405 113.8041 43.61288 18.39216 27.9361 1 0.913798 113.8041 114.7465 

20 81.71998 107.0806 39.70718 10.50791 18.98984 1 1.39623 107.0806 108.9917 

30 52.08079 96.79249 18.56904 5.099624 13.90591 1 1.715288 96.72941 99.77455 

40 33.54832 93.31618 9.127153 3.087682 10.8069 1 1.875194 92.69405 96.74793 

50 20.40314 84.99859 4.892097 2.182304 8.696367 1 2.08473 81.42757 88.56061 

60 12.88907 83.06283 2.933908 1.694546 7.038211 1 1.569965 68.16943 86.52421 

70 8.93947 78.02919 2.012163 1.453138 5.924151 1 1.759722 45.86859 80.70468 

80 6.455024 68.19781 1.5037 1.31052 5.049117 1 1.901367 25.10251 70.12437 

90 4.850621 53.51262 1.193024 1.210347 4.341645 1 1.848439 12.11493 54.10665 
 

                               10               20             30             40              50              60              70              80             90 
% Noise 

 

Fig. 4. IEF of all filters with varying noise density 
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Fig. 5 shows the input image, noisy image, and 
output images of all the filters considered for this 
study with various noise densities. From Fig. 4 it is 
observed that Traditional filters (AFMF, FEMF) 
perform well at low noise and perform poorly  
at high noise. DAF, NHF, and RF perform poor- 
ly at even medium noise with lots of blur- 
ring. For IAT2FF, SeConvNet the performance  
is very poor at all noise levels.  ASMDBUTMF 
performs decent to moderate noise levels but the 
performance is degraded at high noise levels.  

The proposed AWMMF performs well at all noise  
levels.  

From the above comparative analysis for various 
parameters of all the filters, it is clear that the pro-
posed AWMMF outperforms traditional denoising 
methods across various noise densities. The adaptive 
weighting mechanism allows AWMMF to effectively 
balance noise reduction and detail preservation. 
While SMF and AMF are effective at lower noise 
densities, their performance degrades significantly as 
noise density increases. 

 

 
Fig. 5. Visual performance of AWMMF compared to other filters under study 
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DBA shows improved performance over SMF 
and AMF but still falls short compared to 
AWMMF, especially at higher noise levels.  
The superior performance of AWMMF can be  
attributed to its adaptive nature, which adjusts  
the filtering parameters based on local noise chara- 
cterristics. This adaptability enables AWMMF to 
maintain high image quality even under challeng-
ing conditions. The AWMMF offers several ad-
vantages over conventional filters such as adaptive 
nature of the filter effectively handles varying 
noise densities. It maintain the balance between 
noise reduction and image detail Preservation be-
cause of use of mean and median values. The itera-
tive approach and dynamic adjustments make the 
filter robust against high-density noise scenarios, 
where traditional filters often fail. 

 

Conclusion 
 

In this article, we have proposed the AWMMF 
filtering for eliminating the SAPN effectively noise 
in digital images. Moreover, the PSNR, MSE,  
and SSIM of AWMMF compared with the seven 
state-of-the-art filters using the benchmark Leena 
image at varying noise density from 10% to 90%. 
From the comparative analysis it is found that  
the AWMMF ensured superior noise reduction 
while maintaining image details, making it a robust 
and efficient choice for image restoration tasks. 

The novelity of Key findings include as follo- 
wing: 

 AWMMF consistently achieved higher PSNR 
values and lower MSE across all noise densities.  

 The proposed AWMMF exhibited superior 
SSIM performance, indicating better structural 
preservation and visual quality. 

 Unlike conventional methods, AWMMF dy-
namically adjusted its filtering strategy based on 
local noise density, providing enhanced adaptabi- 
lity to varying noise levels. 

These results highlight AWMMF's effective-
ness in medical imaging, remote sensing, and  sur-
veillance, where high-quality image restoration is 
critical. The future work could integrate AWMMF 
with deep learning models to enhance the perfor-
mance and explore the effectiveness of AWMMF 
with other types of noises such as Gaussian, speck-

le, and Poisson noise, expanding its versatility 
across imaging domains. 
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Nomenclature 
 

AWMMF  Adaptive Weighted Mean-
Median Filter 

SMF Standard Median Filter 
AMF Adaptive Median Filter 
RF Regeneration Filter 
NHF Nonlinear Hybrid Filter 
EATV Edge-Adaptive Total Variation 
DAF Detail-Aware Filter 
AFMF Adaptive Fuzzy Median Filter 
IAT2FF Improved Adaptive Type-2 

Fuzzy Filter 
SeConvNet Deep Convolutional Neural 

Network 
FEMF Fast and Efficient Median Filter 
ASMDBUTMF Adaptive Switching Modified 

Decision-Based Unsymmetric 
Trimmed Median Filter 

PSNR Peak Signal-to-Noise Ratio 
MSE Mean Squared Error 
SSIM Structural Similarity Index 
IEF Image Enhancement Factor 
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