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Abstract. Roundabouts provide safe and fast circulation as well as many environmental advantages, but drivers adopting un-
safe behaviours while circulating through them may cause safety issues, provoking accidents. In this paper we propose a way 
of training an autonomous vehicle in order to behave in a human and safe way when entering a roundabout. By placing  
a number of cameras in our vehicle and processing their video feeds through a series of algorithms, including Machine Lear- 
ning, we can build a representation of the state of the surrounding environment. Then, we use another set of Deep Learning 
algorithms to analyze the data and determine the safest way of circulating through a roundabout given the current state of the 
environment, including nearby vehicles with their estimated positions, speeds and accelerations. By watching multiple  
attempts of a human entering a roundabout with both safe and unsafe behaviours, our second set of algorithms can learn  
to mimic the human’s good attempts and act in the same way as him, which is key to a safe implementation of autonomous 
vehicles. This work details the series of steps that we took, from building the representation of our environment to acting  
according to it in order to attain safe entry into single lane roundabouts. 
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Реферат. Кольцевые транспортные развязки обеспечивают безопасное и быстрое движение, а также ряд экологиче-
ских преимуществ. Но водители, придерживающиеся ненормативных правил поведения при вождении по ним, могут 
вызвать проблемы с безопасностью, что приводит к несчастным случаям. В статье предлагается способ обучения 
водителя автономного транспортного средства с целью обеспечения правильного и безопасного поведения при въезде 
в  кольцевую  транспортную    развязку.  Поместив  несколько  камер  в  транспортное  средство  и  обработав  видеозапись 
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видеопотоков с помощью ряда алгоритмов, включая и машинное обучение, можно получить представление о состоя-
нии окружающей среды. Затем используется другой набор алгоритмов глубокого обучения для анализа данных  
и определения наиболее безопасного пути кругового движения с учетом текущего состояния окружающей среды, 
включая ближайшие транспортные средства с их предполагаемым местоположением, скоростью и ускорением.  
Анализируя многочисленные примеры безопасного и опасного поведения водителя во время движения по кольцевой 
транспортной развязке, предлагается второй набор алгоритмов, который позволяет моделировать правильное поведе-
ние водителя, что и является главным условием  безопасного применения автономных транспортных средств. В ста-
тье подробно описываются все этапы работы, начиная от построения рассматриваемой окружающей среды и закан-
чивая соответствующим поведением  в зависимости от ситуации, что позволяет обеспечить безопасное движение  
в кольцевой развязке с одной полосой движения. 
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Introduction 
 
Computer Vision is a field that is undergoing  

a tremendous evolution. Over the last few years 
Artificial Neural Networks (from now on will  
be referred also as ANN or NN) are being used to 
process images due to their high accuracy and fast 
performance, easily outperforming more traditional 
approaches in benchmarks, while being relatively 
easy to implement and reusable. 

The goal of this investigation is delivering  
a system capable of determining whether or not is 
it safe to enter a roundabout given the current traf-
fic conditions. In order to achieve that, we use the 
footage from a single camera installed in our ve- 
hicle instead of relying on LIDAR (Light Detec-
tion and Ranging) data, which would be a more 
traditional approach. 

LIDAR is a surveying method that used a series 
of laser beams to measure the distance to a target by 
tracking the time the light takes to bounce back to the 
sensor. Having one of these sensors on top of our 
vehicle spinning multiple times per second (normally 
at a rate of 20 spins per second), creates a 3D-scan  
of the environment in real time. The downside to this 
approach is that this kind of sensors are expensive 
and not as common as a regular camera (although 
prices are coming down in recent years).  

Traditional cameras are very common type of 
sensor, so being able to rely on its data and leaving 
aside the expensive LIDAR, will enable future inves-
tigation and implantation in autonomous vehicles to 
become much more approachable. Doing this task 
should be feasible as a human subject is capable of 
performing the same task using just one eye, relying 
on years of experience perceiving environments.  

From the images recorded by this monocular 
camera (which we will call “red-green-blue images, 
or rgb”), we use multiple Artificial Neural Networks 
to perform various operations, including vehicle de-
tection, distance estimation, environment recreation 

and motion tracking to obtain their relative speeds 
and accelerations. All this work has been done using 
Carla Simulator [1] for the testing environment and 
Keras as the Deep Learning Framework. 

 
Environment perception  
with Neural Networks 
 
Artificial Neural Networks are systems that re-

semble the biological neural networks in our brains 
(although they’re not identical). These systems can 
“learn” how to perform a task given a correct de-
sign (called architecture) and a learning process 
(commonly referred to as training). When these 
systems complete their learning process, they build 
a model that we can use to perform the task that 
they were created for. 

Their usage in image recognition is becoming 
popular in the last ten years. They can be used for 
trivial tasks like, for example, analyzing a series  
of images and detecting which ones contains dogs. 
They are widely used in ways out of the scope  
of this investigation, such as spam detection, shop-
ping recommendations, voice recognition, photo en-
hancement and creating complex virtual assistants. 

In this project, we are using various Neural Net-
works working together to attain our goal. First, we 
feed each of the frames captured by the camera 
through an object detection network. Instead of de-
signing a network architecture from scratch, we’ve 
decided to choose YOLO (version 3 [2]) as our  
object detection system. The reasons for this are: 
YOLO [3] usage is very extended throughout nu-
merous projects and it has been proved to provide 
a good ratio between accuracy and performance. 
Keep in mind that this system is going to be used in 
real time on a reduced hardware environment,  
so high performance is absolutely necessary. In our 
test, using images of size 416×416, we can do the 
object detection task at 28 frames per second, which 
is well above our target 20 frames per second. 

https://doi.org/10.21122/2227-1031-2020-19-1-
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There are plenty of datasets available to use 
with YOLO, even pre-trained models freely available 
to use. In order to maximize its performance and 
minimize the error of the predictions, we have crafted  
a custom dataset using images extracted from  
Carla, some examples can be seen in Fig. 1. 

 
a b 

 

 

 
Fig. 1. Sample car images taken from our dataset 

  
The dataset contains just four classes (types of 

objects that we want to identify): vehicles (inclu- 
ding cars, buses, trucks, bikes and motorbikes), traf-
fic lights, traffic signs and pedestrians, which is much 
less than the twenty general-purpose classes used in 
the default dataset. Fine tuning the dataset and model 
to our needs creates a smaller, lighter model which 
results in faster and more precise predictions. Keep in 
mind that the only class relevant to this project is the 
“vehicle” class, the rest of the classes are included in 
the dataset just for future use. 

This is the first and most important NN in our 
system. The raw data from the camera is passed 
through it and the process begins. The network 
detects the objects in the current frame and returns 
the list of the detected bounding boxes. A bounding 
box has the following attributes: the coordinates of 
the object’s upper left and lower right corners in 
the image, the object’s class (vehicle, traffic light, 
traffic sign or pedestrian) and the confidence level 
of the prediction. We set a minimum confidence 
level threshold to validate the predictions and store 
all the detected bounding boxes above that threshold 
to further analyze them. 

Our next step is motion tracking. There are two 
possible scenarios for each object in the frame: 
being a new object or being an object previously 
detected on another frame. We check for con-
sistency between the new bounding boxes and  
the bounding boxes we had already detected.  
A process of trying to pair each new object with an 
object from the previous frame begins here: we 
check every bounding box of the current frame 
against the ones we had from the previous frame 
and try to pair the ones that offer the best overlap. 
For each object, if the best overlap ratio is lower 
than a threshold, we consider that the new bounding 
box was not on the scene before this frame, which 

means that the object is new, so we add this object to 
the scene. Conversely, if the overlap meets our 
threshold, the object might be one that we are already 
tracking. The next step to decide if it’s a new object 
or not is to check color consistency between the two 
objects, the new one and the candidate from the pre-
vious frame. Only if the colours are similar we con-
sider them to be the same object. 

Here’s when a second Neural Network starts  
to work. As we saw earlier, one important step  
of the process is to estimate the distance between 
our vehicle and the rest of the vehicles. Doing this 
with LIDAR would have been much easier, as it 
gives you the distance to all surrounding objects with 
a high precision and low error rate. Getting that 
measurements with a stereo camera setup is also  fea-
sible, as that is the way the human brain can estimate 
the depth of the different points of the surrounding 
environment. The challenge is getting this data with 
just one camera image as we lack a lot of the infor-
mation that makes the estimation possible. 

A lot of the work done on this step is based on the 
work done in this project [4], but we are using ano- 
ther network architecture to try to speed up the pro-
cess while losing the minimum possible precision. 

We built a dataset consisting on standard pic-
tures captured with a camera and their correspon- 
ding depth maps. In the real world, you would 
need a LIDAR to get the actual measurements, but 
Carla provides us with tools to get this data. After 
getting more than two thousand pairs of standard 
and depth images, we train a new network to con-
struct a depth map from any given image. Using  
a mean squared error metric, we get an error  
of 0.0058 on the training set and 0.0087 which 
means that our predictions should be, by average, 
within a 9.73 % margin of the real value. 

Fig. 2 shows an example of an image, its real 
depth map and the predicted depth map created by 
our network. 

Having this second network creating the neces-
sary depth map makes possible the next step: estima- 
ting the distance between our vehicle and each one of 
the detected bounding boxes. This is a straightfor-
ward process: first, we get the bounding box of each 
object (the bounding box contains the pixel coordi-
nates of the top-left and bottom-right corners of the 
object in the rgb image), we then get the average  
colour for that region in the depth map, (discarding 
atypical values in order to reduce error). Then using 
linear regression, we map that pixel’s rgb value  
to a numeric value corresponding to the distance. 
Every object in the scene contains the history of 
the object’s estimated distances as well as their 
associated timestamps.  
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Standard image 

 
 

Predicted depth map 

 
 

True depth map 

 
 

Fig. 2. Real and predicted depth maps comparison 
 
If this is not a new object, we should have an 

old distance estimate accompanied by the 
timestamp of that measurement. Having this, we 
can calculate the delta distance and the elapsed 
time between the two instants and estimate the cur-
rent relative velocity of the object (related to our 
vehicle). In the same way, we can estimate the cur-
rent relative acceleration if we have multiple ve-
locities recorded for the object. 

 
Decision making  
with a Neural Network 
 
Once our system is able to generate all the data 

we need, we can put it together into our practical 
case: determining whether is it safe or not to perform 
the incorporation into the roundabout. As we ap-
proach the roundabout, we are gathering information 
about the rest of the vehicles. This is where the last 
NN begins doing its job, but first we have to train it. 

The training process is as follows: a human driver 
watches the environment through the camera feed 
and, he inputs to the training data if a incorporation 
would be safe given the conditions in that instant. 
This time, the output of the network would be  

a simple “yes” or “no”. The user’s elections are  
recorded with their time stamps, as well as the video 
feed from the camera. Then we use this data as  
training data, feeding it into our NN. Given enough 
data and time to compute it, out network can asso- 
ciate scene features to one of the output labels 
(yes/no) and learn how to make the predictions. 

 
CONCLUSIONS 

 
1. We have created a reusable framework that 

sets the foundation for future projects. As this sys-
tem requires no specialized hardware aside from  
a regular camera and a computer, we can easily 
replicate the job done in the simulator in the real 
world, without the need of spending money on ex-
pensive sensors or performing irreversible modifi-
cations in a vehicle. 

2. We have achieved depth estimation and  
3D-point reconstruction with a mono camera with 
sufficient precision, but further refinements to the 
system will be done. Right now, it doesn’t take into 
account important factors such as camera FOV, and 
camera height. Taking these factors into account will 
improve our estimations and allow us to put the sys-
tem to work on different configurations, which is 
impossible right now without losing accuracy. 

3. Object recognition will continue to improve. 
Future versions of current architectures or newly 
developed architectures from now on will benefit 
this project, as its modular nature allows us to easily 
swap and integrate components into our system. 

4. Motion tracking should be improved in the fu-
ture, as it is key to speed and acceleration estima-
tions. Using stereo cameras doesn’t add much cost to 
the required hardware and will give us a boost in  
accuracy, which will improve the data gathered by 
the system, although, in its current state, we can rep-
licate the desired behavior safely.  
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