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Abstract. During the early development of a new vehicle project, the uncertainty of parameters should be taken into consi-
deration because the design may be perturbed due to real components’ complexity and manufacturing tolerances. Thus,
the numerical validation of critical suspension specifications, such as durability and ride comfort should be carried out with
random factors. In this article a multi-objective optimization methodology is proposed which involves the specification’s
robustness as one of the optimization objectives. To predict the output variation from a given set of uncertain-but-bounded
parameters proposed by optimization iterations, an adaptive chaos polynomial expansion (PCE) is applied to combine a local
design of experiments with global response surfaces. Furthermore, in order to reduce the additional tests required for PCE
construction, a machine learning algorithm based on inter-design correlation matrix firstly classifies the current design points
through data mining and clustering. Then it learns how to predict the robustness of future optimized solutions with no extra
simulations. At the end of the optimization, a Pareto front between specifications and their robustness can be obtained which
represents the best compromises among objectives. The optimum set on the front is classified and can serve as a reference for
future design. An example of a quarter car model has been tested for which the target is to optimize the global durability based
on real road excitations. The statistical distribution of the parameters such as the trajectories and speeds is also taken into
account. The result shows the natural incompatibility between the durability of the chassis and the robustness of this durabi-
lity. Here the term robustness does not mean “strength”, but means that the performance is less sensitive to perturbations.
In addition, a stochastic sampling verifies the good robustness prediction of PCE method and machine learning, based on
a greatly reduced number of tests. This example demonstrates the effectiveness of the approach, in particular its ability to save
computational costs for full vehicle simulation.
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XapaKTePHUCTHK MOJBECKH, TAKMX KaK JOJTOBEYHOCTH U KOM(MOPTHBIE YCIOBHS BO BPeMs JBIDKCHUS, JOJDKHA IPOBOJHUTHCS C
ydeToM (akTopoB ciiydalHOCTH. B crarbe mpejuiaraercst IpUMEHSITh MHOTOLICJIEBYIO METOMOJIOTHIO ONTHMHU3ALMU, KOTOpast
paccMaTpuBaeT HaJeKHOCTb clelMpHUKaLUK B Ka4eCTBEe OJHOM M3 3a1ay. C IeNbio MPOrHO3UPOBAHUS KOHEUHOTO Pe3y bTaTa
Ha OCHOBAaHWH 3a[JaHHOTO Ha0opa HEOINpeAeNeHHbIX, HO OrPAaHHYCHHBIX apaMeTpoB, IpeUlaraéMbIX B IPOIECCe ONTUMU3a-
IUOHHBIX MTEPAIHH, MCHONIB3yeTCsl alalTHBHOE MOJIMHOMUAIBHOE XaOTHYHOE paclIMpeHne Il o0beANHEHHs JOKaJIbHOTO
HPOEKTHPOBAHUS SKCIIEPUMEHTOB M IJIOOAIBHBIX MOBEPXHOCTEH OTKIMKAa. Kpome TOro, 4roObl yMEHBLINTH KOJIMYECTBO
JIOTIOJIHUTEIbHBIX TECTOB, KOTOPBIE HEOOXOJMMBI [Isi MOCTPOCHUS MOJHHOMHANIBHOTO Xa0TUYHOTO PACIIHPEHUS, UCTIOIb3Y-
€TCsl AITOPUTM MAaIIMHHOTO OOy4YeHUs, OCHOBAHHBI Ha MEXKIIPOEKTHOH KOPPEISIMHOHHONW MaTpHIE, IS MPOBEASHUS KJlac-
cu(UKALUK TEKYIIHX MPOSKTHBIX TOYEK C IMOMOIIBI0 HHTEIUICKTYaJIbHOTO aHaln3a JaHHBIX W Kiactepu3aiuu. Takum obpa-
30M, TOSBJISIETCA BO3ZMOXKHOCTh IPOrHO3MPOBATh HAZIEKHOCTh pa3pabaThIBaeMbIX ONTUMHU3UPOBAHHBIX PEIIeHHH 0€3 UCIOb-
30BaHUS JOMOJTHUTENBHBIX Mozenei. [1o 3aBepiieHnn mporecca ONTUMH3AINN MOXKET OBITh TmoiydeH ¢poHT [lapeTo Mexmy
crerMGUKAMIMH U UX HaIeXKHOCTBIO, KOTOPBIM HpeCTaB/sieT HaWIydllee KOMIIPOMHCCHOE pElIeHHEe C ITOCTaBICHHBIMU
neasMu. OnTuManbHBINA HAOOp Ha JaHHOM (QPOHTE KIACCU(PUIMPYETCS U MOJKET SIBISITBCS OPUSHTHPOM ISl TPOSKTHPOBAHUS.
[IpuMepoM 3TOro MOXKET CIY)KUTh TECTUPOBAHHE MOJEINM aBTOMOOHIIS C IENbI0 ONTHMHU3ALUK €ro r100aJbHON J0JIroBed-
HOCTH Ha OCHOBE JOPOXXHBIX cuTyaruid. IIpm 3ToM craTHCTHYecKoe paclpereneHre MapaMeTpoB, TaKHX KaK TPAeKTOPHH
M CKOPOCTH, TOXKE IPUHUMAETCSI BO BHUMaHHe. Pe3ynbTaTsl HCCIeJOBaHUH MOKa3bIBAIOT HECOBMECTUMOCTD MEXKY JIOJITOBET-
HOCTBIO IIACCH U HAJEKHOCTBIO 3TOTO MapaMeTpa. B maHHOM ciyuae TEPMHH «HAJEKHOCTb» HE O3HAUaeT «IIPOYHOCTHY.
B cTarbe 3TOT TEpMUH IpeaIonaraet, 4To (GyHKIIMOHUPOBAHUE SIBISIETCS MEHEE TyBCTBUTEIIBHBIM K KaKIM-THOO OTKIOHEHH-
aM. Kpome Toro, croxactiudeckast BBIOOpKa MOATBEPKAAET NMPABHIBHOCTH IIPOTHO3a HAJEKHOCTH METOIOM IIPUMEHEHHS I10-
JIMHOMMAJIBHOTO XaOTHYHOTO PACIIMPEHHs M MAIIMHHOTO OOYUYCHHs, B OCHOBE KOTOPOTO JISKHUT 3HAYMTEIILHOE YMEHbBLICHHE
Konu4ecTBa TecToB. [TokasaHna 3¢ deKTHBHOCTD MpeIaraeMoro rnojxojaa, B YaCTHOCTH OTMEYAeTCsl BO3MOXKHOCTh SKOHOMHHU
pacUeTHBIX 3aTpaT Ha Pa3pabOTKy MOAENEH TPAaHCTIOPTHOTO CPEACTBA.

KiroueBble cj10Ba: JONTOBEYHOCTD MIACCH, aHAIN3 AAHHBIX, MAIIMHHOE 00y4eHHe, MHOTOIIENEeBas ONTUMH3ALHS, TOJTMHOMH-
aJIbHOE Xa0TUYHOE PACIIUPEHUE, HAIe)KHAST KOHCTPYKIIHS

Jas uutupoBanus: HanekHas KOHCTPYKIUS MOJBECKU C MOJMHOMHAIBHBIM XaOTUYHBIM PACIIMPCHHEM W MalNIHHHBIM
obyuenuem / X. ['ao [u ap.] // Hayxka u mexnuxa. 2020. T. 19, Ne 1. C. 43-54. https://doi.org/10.21122/2227-1031-2020-19-

1-43-54

Introduction

The robustness of vehicle specifications is
given more and more attention in Renault because
original designs during the development can be
perturbed by many uncertain sources: actual road
charges, manufacturing tolerances, aging of mate-
rials, etc. As a result, sometimes the validation of
important specifications such as chassis’ durability
may take a lot of time and resources to ensure
the design is robust enough and can be satisfied all
through the vehicle’s life cycle [1].

In this paper, the term of robustness is defined
as system’s ability of tolerating outside perturba-
tions. The robustness is an opposite notion of sen-
sitivity where the least variation of vehicle perfor-
mance is searched within the random input para-
meters. Instead of analyzing the impact of each
parameter on the final output, the robust optimiza-
tion focuses on minimizing the overall variations
while the statistic characters of input are pre-
defined. Meanwhile, these two notions can easily
be transformed after the result of a design of expe-
riments is obtained.

There are several numerical methods to calcu-
late the robustness of one given set of parameters
under perturbation.

44

e Monte-Carlo analysis is to generate random
samples in uncertain spaces according to their dis-
tributions. The method is easy to integrate and re-
liable but it requires a huge number of samples
to eliminate the random effects of sampling. Other
similar methods such as Latin Hypercubic Sam-
pling (LHS) or orthogonal design of experiments
are proposed to reduce the total number of tests but
are still expensive when the simulation itself
is very heavy.

e Min-Max analysis is to run simulations with
the combination of upper and lower bounds of un-
certain parameter intervals to estimate the worst
case under perturbation [1]. It needs less tests
compared to random sampling and the result is
reasonable as long as the effects of parameters are
linear or quasi-linear. However, the statistic cha-
racters of the systems cannot be obtained when
only the bounds of interval are considered and
the robustness estimation may put too much em-
phasis on the case of which the possibility can be
neglect able.

¢ Analytical methods such as Taylor expansion
or direct interval analysis [2] are very efficient
because only partial differential equations of the
systems are needed instead of a large amount of
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simulations. However, the mathematical expres-
sions in the industrial problems are difficult to ob-
tain while simplifying a complex system into an
academic model may raise the problem of repre-
sentativity.

One of the targets during project development
is to integrate the robustness into the optimization
procedure where the optimum of vehicle specifica-
tions and their robustness are searched at the same
time. It becomes even more important to reduce
the additional simulation number. In this article,
an approach based on polynomial chaos expan-
sion (PCE) is applied where only a limited local de-
sign of experiments is need for each design point.

The Hermite polynomial chaos was first intro-
duced by Wiener [3] to model stochastic response
of a system under Gaussian distributed parameters.
Then it has been extended into other type of or-
thogonal polynomial bases according to diffe-
rent probability distributions [4, 5]. In this study
Chebyshev polynomials of the second kind have
been applied, which fits better real industrial un-
certainties.

The target of polynomial chaos expansion is to
establish a relationship between a system output
and parameter inputs based on a given series of
polynomials. Once the coefficient in front of each
polynomial is calculated, system can be described
and the robustness can be calculated. For a black
box system additional tests are needed in order
to decide the maximum order and important inter-
active terms of polynomials included in this
expansion.

This paper proposes a multi-objective optimi-
zation plan with the integration of adaptive-sparse
polynomial chaos expansions. The polynomial
chaos expansion is calculated by a projection
method which reuses response surfaces constructed
in the optimization process. To further reduce
the additional tests, a machine learning algorithm
based on data mining is applied to justify by ad-
vance the quality of response surface before run-
ning the local design of experiments.

Section II of this paper introduces the construc-
tion of polynomial chaos expansion as well as its
integration into the optimization strategy. In sec-
tion III a data mining and machine learning algo-
rithm is presented which aims to further reduce
sample numbers but keep the accuracy of robust-
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ness prediction. Section IV demonstrates the opti-
mization of a quarter-car example with the pro-
posed approach.

Robust optimization with PCE

Introduction of polynomial chaos expansion
and Chebyshev polynomials of the second kind.
An N-dimensional random variable vector

x=(x,x,,...,x,) is considered. For each input

variable x; e I',, whereI'; is a one-dimension ran-
dom space, its probability density function (PDF)
can be defined by p, (xl. ) Assuming that all the ran-

dom variables are independent, the overall PDF P(x)
can be defined as

P(x)zp1 (xl)p2 (xz)...pN(xn)
in'=II,...T',. (1)

The system at one set of parameters x an be
written as a converged series of polynomial basis

Lmnzi (5(x )%%+2zywxﬁ X))+
+ZiZmW( )& (¥)+ @

+ZZZZMﬂW

J3=li=1i,=1i3=1

x).&, (x).8, (%)) + -

where é(x)z{él (x).&,(x), ..., €, (x)} — set of
ran-dom variables obtained by normalization of x
according to known mean values and the standard

deviations; ¢/ (c‘,(x)) — n-dimension chaos of or-
der j in terms of &(x).

The inner product of two orthogonal poly-
nomial basis can be expressed as

(00;) =8, (¢), (3)

where 6, — Kronecker delta, 5, =1 when i =/ and
0, =0 when i # j.

To simplify the expression, the equation (2) is
truncated to maximum order M and it includes only
univariate and bivariate terms, which can be re-
written as
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M n
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Ji=li=1
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PIDILAC (& (0.8, (x) @

Ja=li=li=1

The form of the polynomial basis ¢, is defined

by the distribution types of random parameters.
Chebyshev polynomial of the second kind is ap-
plied in this study. As its probability density func-
tion corresponded is Wagner semicircle distribu-
tion defined in (Fig. 1) [-1.1]. The semicircle law

is more suitable to industry problems where the
parameters have more weights around the design
values and will never go to infinity. The polyno-
mials can be defined by a recurrence method:

Ui (Z}l ) =2xU, (éz ) -U,, (éz )’

for n>1
with U, (&,)=1; U,(&,)=2¢, ()
and & e[-1.1],

where &, — respects a Wagner semicircle distri-

bution.

The distribution function is normalized to make
sure the integration in [-1.1] equals to 1, so in fact
it becomes a semi ellipse

w(e)==y1-8. (©6)

The equation (3) can be expressed as for two
one-dimension polynomials

1

<UmUn> = IUn1 (éi)Un (éi)w(&i)dx =

-1

0, if i#J;
— b b (7)
L if i=.
A pix)
» X
Lower Design Upper
tolerance value tolerance

In equation (4) coefficients s; are unknown
and need to be calculated. For a black-box system,
two non-intrusive methods exist to calculate s;.

e Regression method: the order and the terms
of the expansion are assumed a priori. The coeffi-
cients are then calculated by linear regression
method based on the samples around the reference
point. By iterations the algorithm will decide
whether to add or remove terms from the expan-
sion until all the important terms are included [6].

e Projection method: an analytical expression
has been pre-defined used to represent the black-
box system. Then based on this expression, each
coefficient is calculated one by one according to
orthogonal projection. Additional samples are also
necessary to justify if the expansion order has been
converged [7].

In the optimization process expressed in Sec-
tion III, the analytical expressions for the result
outputs have already been calculated. The projec-
tion method will be introduced in detail and ap-
plied. Another advantage for the projection method
is that the accuracy of robustness estimation de-
pends more on the quality of analytical expressions
but is less sensitive to the number of samples com-
pared to the regression method.

Assuming f{x) is a performance function de-
fined in the design space, one can obtain by multi-

plying ¢, (&) to both sides of (4):
(@) (Sen @) ®
5, =R )

where <¢j (§)2>— constant; <f(x)¢j (<“,)>— calcu-

lated by multi integration.

A wi(&)

:D/

Fig. 1. Transformation of a real design parameter to a normalized random variable of Wagner semicircle distribution
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The reference [8] has proposed a decomposi-
tion method of f(x) and the numerator of equa-

tion (9) can be expanded into univariate and biva-
riate terms

‘(”‘l)f(“)<¢j( k)>) f(xk,uk)¢,(ék)>

R <¢j . )2> . (10)
()8 (Ees)
jij <¢j1/‘ (&8 )2>
{Z o)
(0, (58))
. ~(n- 2)2:’:1f(xi,“i))¢jlj (& )> .
(0, (08))
L e,
<¢_/l_f (&6 )2>
:<f(xpxpuw)¢m(abgﬂ>’ 1n

(4, (&e8))

where sf — coefficient for the /" order univariate

polynomial term of E’;(xk); sfljl — coefficient for
the j order bivariate polynomial term of &(x, )
and &(x;) (7" order for &(x,) and (j—j)™ or-
der for &(x,)); (xi,ui) — vector that replaces all the
random variables by its reference value except x;;
(xl.l,xl.z,uil 0 ) — vector of reference values exclu-
ding x,,x,; f(n)— function value when all the

variables are equal to the reference ones.
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It can be noticed that equations (10) and (11)
require only one- or two-dimensional integrations.
The higher order interaction terms are neglected
because of the weak non-linearity in mechani-
cal systems, which saves greatly the computational
resources.

One determination coefficient R* is calcu-
lated to justify the correlation between the PCE
and test results

LS e) )

2

VI )y X))
(12)

where J — order of the PCE; x’ — I sample of local
experiment design; £, (x’ ) — test result of this

R*(J)=1

b

sample.
It can be seen that the quality of prediction is im-

proved with R’ (J ) approaching to 1.
When the PCE order is increased by iterations,

the PCE is converged if the difference of R* bet-
ween two orders is smaller than a threshold g
which means including new terms has nearly zero
impact on the expansion

R*(J)-R*(J -1)<e,. (13)

Furthermore, as 2D-integration is usually more
expensive to calculate, another indicator is de-

fined to justify if the bivariate terms of &(x, ) and

&(x,) for PCE have converged before the total
expansion

(S e (e

N €rss

<e,. (14)

If the equation (14) is satisfied it means the
contribution of /" order bivariate terms of &(x,)

and &(xl) is negligible with respect to the expan-

sion and for the next order this term will not be
calculated. A summary of the procedure of calcula-
tion of PCE around one reference solution can be
seen in Fig. 2.

Once the PCE is constructed, the mean value and

standard deviation of f'(x) can be estimated by:
_ M
Fs)={r ()=o) =ns 19
i=0
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o(f(x))= (ﬁ:sid%jz :ésf. (16)

PCE starts

i

A given design design point x
and a performance function f(x)

l

Calculate a local DOE
around x

i

Calculate i order
uni-coefficients |

)

i 1)" bivariate terms
has converged to ¢

i=i+1

Calculate i™ order
bivariate coefficients

No

RG)-R(i—1)<¢g

Calculate the robustness of x

PCE ends

Fig. 2. Summary of PCE calculation by PCE method
for one reference solution

Multi-objective optimization. Chassis systems
has multiple demands on durability, ride comfort
and handling, etc. while each of them is often in-
compatible with the others. Therefore, during the
design phase, the optimization of chassis system is
naturally multi-objective where the best compro-
mises are searched.

The robustness of objectives included in the
optimization plan are also integrated and listed as
the objectives for optimizing. This step tends to
make the objectives even more incompatible be-
cause empirically the optimums are less robust
compared to the less good solutions. Thus, this
study aims to find the relationship between the ob-
jectives and their robustness and to propose the
optimums which are less sensitive to perturbations.
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The mathematical expression of multi-objective
optimization can be expressed as:
— minimize:

F(x)={f(x). (%), ... £u(x)}; (7

— under the constraints:
h(l.(x)=0,j=1, s 5
g (x)<0,k=1, ..., p; (18)

x™<x<x™ r=1,...n,

where x — nx1 vector of design parameters which

in

forms a design space; x™, and x™ — lower and

upper bounds of the design space; F(x) — mx1
vector of objective functions for minimizing;

h; (x) - (x) — equality or inequality constraints

of the system.

Instead of summing all the compositions f{x)
in F(x), the optimization will treat each objective
separately. As a result, the optimization plan will
propose a set of compromised optimums instead
of only one solution, which will form a Pareto
front [1, 9, 10]. The definition of one Pareto opti-
mum is one which is not dominated by any other
solutions. There may exist one or more solutions
which have better performances in some objec-
tives, but they must have worse solutions in other
aspects than those of Pareto optimums.

Another characteristic of industrial problems
is that the systems are usually black-box models
and the mathematical expression of F(x) does

not exist. Therefore, a Meta-model F,,,, (x) will
be constructed before the optimization iterations
begin [11, 12]. F,,,(x) consists of several re-

sponse surfaces which describe the black-box sys-
tem with different combination of polynomials.
The equation (17) can be replaced by as:

(s, (%), fis, (). fis (%)}
P (8)= 118 (5). i, (61 B, () 19)
{f]gs3 (x), f]gs3 (x)fzéisz (x)},

where ijs (x)|(j:1...ll.) — ™ response surfa-
ces for f;(x) constructed from an initial design
of experiments (DOE) in the design space; /;, — total
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number of response surfaces configurated for fi(x);
1 135_ (x) —new response surfaces for fi(x) who sums

all the response surfaces regarding to their quality
by cross validation [13].

The meta-model can then replace the black-box
model and be used with the genetic optimization
algorithm NSGA-II [14, 15].

For the robustness objectives, the calculation of
PCE is based on the Meta-model constructed in
this step. As the Meta-model has several expres-
sions to represent the system, several estimations
of PCE can also be made. The final robustness
is a weighted sum of these estimations according
to the quality of response surfaces:

1 .
== —2rolfs (x): @0
Zi:Opj J=0 ( ; )

P = 1 e

(11 ()

o( /(%))

where G( fis (x)) — /™ PCE robustness estimation

for f;(x) based on the projection of its /" model

1

fis (x);

coefficient for c( f,{S,.(x)) when the PCE is con-

R} ( fis (x)) — final determination

verged to g, (see (13)); p, — weight indicator

which judges the quality of i response surface by
comparing it with 1.

The procedure of robust multi-objective opti-
mization is summarized in Fig 4. By iterations, the
potential optimums can be proposed by the genetic
algorithm based on the objectives’ response sur-
faces. The proposed solutions and their robustness
will then be validated by real numerical simula-
tions, of which the results are reused to improve
the quality of response surfaces. If the optimization
is converged, the solutions proposed will form
a Pareto front.

It should be noted that although both the res-
ponse surfaces and PCEs are in the form of poly-
nomials, the domain of these polynomials are dif-
ferent. For response surface, the variables can
cover any values in the design space while for PCE
the variables are limited in the neighbourhood of
one design value. PCE describes the local behavior
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of a specific point on the response surface. That’s
why the global quality of response surface has
a great influence on the robustness estimation.

Application of data mining
and machine learning

The calculation of PCE by projection method
requires much fewer tests compared to purely ran-
dom sampling methods such as Monte-Carlo,
which has been shown by the example in Section IV.
However, the integration of robustness into the
optimization requires hundreds of PCE calculation
which is still expensive even if the number of tests
required to compute the robustness at one point has
been greatly reduced. Two approaches have been
applied at the same time to further reduce the
number of samples tested for each point.

The first approach is called inherited design
of experiments referenced in [13]. The simulations
will stock in a data base and be reused in the local
DOE for future calculation of PCE if there already
exist test results in a new coming point’s neighbour-
hood. With the enrichment of the data base, the extra
number of simulations tends to be reduced.

The second approach is to exploit further the
data base with a data-mining algorithm and to learn
to construct the PCE without extra samples. In the
procedure of PCE calculation by projection method
in Section II, the local DOE is used to converge
the projected terms and orders in PCE by analyzing
the quality of approximation between the PCE
response surfaces and the simulation results. Unlike
the regression method, where the coefficients of
polynomials are calculated directly from the DOE
results, the projection method depend mostly on
the modelling quality of meta-model. If one can
predict the weighting factor in equation (20) of
each response surface of meta-model on the point
to be studied, there will be no need to run extra
simulations for PCE calculations.

The data-mining strategy referenced in [10]
which is firstly used for post-processing of Pareto
front starts firstly by calculating the normalized
correlation distances of different information
between each pair of design points i and j:

| -~|

,t,s=1...N),

Di=1- (22)

max(”x’ —-x*
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] |7 F|
D =1- . (23)
max(”F’ —-F*|, t,s =1...N)
Dl =1- HPi _ Pj” (24)
! max(HPf P, 4, 5= 1...N)’

X F P : : :
where Dy, D;, D, — distance of input variables,

objectives and weighting factors of design points i
and j; N — number of existing simulations in

the data base; x' — i™ vector of input parameters;
F' — vector of objectives defined in equation (17);

P’ — vector of weighting factors calculated when
combining the estimations from response sur-
faces in (21).

According to the definition, the correlation
between two designs will be good when D, — 1.

The inter-design matrix D", inter-objective mat-

rix D" and weighting factor matrix D” are sym-
metric matrix and can be used to analyze
the correlation of each pair of points in the data
base (Fig. 7, 8). Another mixed matrix M can be
defined to show the correlation of both input and
output between two designs:
My =(D;)" (D7 )"
(25)
c,tep =1,

where ¢, ¢, — coefficients of mixture defined

between 0 and 1.

In order to make the matrix more readable,
a bipolarization algorithm cited in [10] will used to
arrange the order of design point according to their
resemblance level. The algorithm starts with
finding the two most different design point in M;
and grouping their neighbors based on a re-
semblance threshold s. This operation is looped for
the rest of non-grouped points until all the points
are arranged. The algorithm schema is shown
in Fig. 3.

An example of the result after bipolarization is
shown in Fig 3. It is a process similar to clustering
method in data mining which also regroups
the existing solutions according to several fea-
tures (in this study the parameters and objectives).
The typologies of the database can be exploited as
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a post-processing to find the orientation of multi-
objectives in each group. The grouping result will
also serve as a base for learning in the next steps.

Bipolarization starts
Y
A mixed correlation matrix My
and an simular threadhold s

TR

[ 8z, = mincat™)

1e
J

No

Groupy, = find(M,:k > 5)
k= 1.size(M™)

I

[M”‘“: Delete Group, from M”'J

}

Groupms =find(M,$:' > 5) ]

m=m+2

k = l.size(M™")

!

[ M"™2: Delete Groupm,) from M1 }7
ﬁ/Remm Groupg, k = 0...(m + 2)/

Bipolarization ends

Fig. 3. Algorithm schema for bipolarization method
of data mining

Fig. 11 shows D; in the groups obtained

by mixed design-objective matrix M in Fig. 10.
It shows that for the resembling design points,
the weighting factors tend also to be alike. It is rea-
sonable because the points in the same group also
tend to be neighborhood in the meta-model, where
the modelling quality of response surfaces is simi-
lar in this area. The neighbourhood has been dis-
placed for a different group thus the modelling
quality of each response surface has also changed.

Hayka
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The principle of learning is that if the new design
points of which the robustness is to be calculated
fall into one existing group, the quality of estima-
tion of each response surfaces can also be learned

based on the D,f information in the group. As a

result, the calculation needs no extra simulation.
The algorithm of learning for a new coming de-
sign point can be summarized as following:
1) a new line/column is added into the correla-

tion matrix D*, D" to make two (n+1)(n+1)

matrix by calculating the correlation distances
from the new point to the data base;

2) the minimum correlation distance is to be
found between the new point and each existing
group. A pre-defined threshold will judge if the new
coming point belongs to any group in the data base;

3) if no groups can be referenced. The robust-
ness will be calculated by the local DOE method
in Section II. If there exists at least one group
that can include the new design point, the vector P
of weighting factors can be learned from those in
this group. The combined PCE estimation can be
obtained without running simulations.

Example with a quarter car model

A quarter car model has been applied to
demonstrate the robust multi-objective optimiza-
tion strategy proposed in this paper. The model has
been shown in Fig. 5: m; — unsprung mass which
sums the mass of the wheels and a part of half
suspension; m, — sprung mass of a quarter of the
car body; k,, ¢, — tire stiffness and damping rate;

k,, c, —suspension vertical stiffness and damping

rate; x, — coordinate of the road profile; x,, x, —
vertical displacements of the unsprung/sprung
masses.

In this example it is assumed that the masses
m,, m, and the properties of tire k,, ¢, are given
and the target is to optimize the properties of sus-
pension parameters: k, and c,. The non-linearity
of damping ratio ¢, has been considered and thus

it consists of four values which define different
slopes of force/velocity at high & low velocity and

compression & rebound phases (c,;, i =1...4).

esign space |x™in, x™ax]
and objectives

l

Run a initial DOE for objectives and
generate the response surfaces (RS)

}

Run PCE calculations for objectives
and generate the RSs for robustness

}

Update the

Generate the optimized points by
multi-objective optimization NSGA-II

responses surfaces l

‘ Validation by simulation for objectives

Yes

Calculate the PCE by learning ‘

he point can be grouped
by bipolarisation?

‘ Test database for
robustness

No Archive

‘ Calculate the PCE by local DOE

Pareto front is converged?

Yes

Optimization ends

Fig. 4. Summary of the optimization procedure with the integration of PCE calculation and learning algorithm
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X3
___ ] m,
iR
X kz \_‘J Co (4 parameters)
[ P 'nf-[1
oy |
______ Vref
A

Fig. 5. A quarter car model with its definition of parameters

The objective in optimization is to minimize
the equivalent damage force on the m; when x is
passing a Belgian blocks test track. The definition
of equivalent damage force is based on Basquin
fatigue low

=K

Just

1
Zdlni B 26)
ax 2N >

where F,;, — equivalent damage force; F,, — ma-

ximum force in Basquin model when total da-
mage D = 1; N — number of cycles corresponding
to D = 1; d;, n; — cumulative damage and its repeti-
tions in the force signal in the simulation which are
obtained by rainflow-counting algorithm; B — con-
stant number of the Basquin model.

The second objective is the robustness of F,,
due to the uncertainty added in the system: the va-
riation of k, and c¢,;, i=1...4, to represent manu-

factory tolerances and aging during usage accom-
panied with passing velocity and road amplitudes
as validation process perturbations.

The non-dominated design points between two
objectives are shown in Fig. 6 with the PCE me-
thod and learning algorithm. The optimum solu-
tions in durability have relatively worse robustness
due to perturbations. Tab. 1 shows the comparison
between a much larger sampling size (1000 tests)
with Latin Hypercubic method, the local DOE with
only 8 tests and learning algorithm without tests
for 3 design points. The reference point is the de-
sign point when the optimization starts. Optimized
point 1 is one of the optimums orientated to ro-
bustness and optimized point 2 is one oriented to
durability. It can be seen that the PCE method suc-
ceeded in produce the closed estimations as ones
from a larger sampling especially for the first two
points. Estimation for the design points oriented to
durability is less good but it still shows the ten-
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dency of the relationship between the objective and
its robustness.

¢ Starting point

Pareto front alter 2 iteration
- - -Pareto front alter 6" iteration
..... Pareto front alter 9" iteration
___Pareto front alter 12" iteration

Robustness of Foy

PR PR
Normalized Fey
Fig. 6. Evolution of Pareto front between normalized
equivalent damage force and its robustness
(The damage force of starting point is 1)
Table 1

Comparison of PCE estimations obtained
by different methods for 3 points

Ref. point |Opt. point 1|Opt. point 2

k, N/m 20500 10250 10250
¢21, Ns/m 250 790 260
€21, Ns/m 2220 4440 1100
¢21, Ns/m 2360 4720 1220
€21, Ns/m 2360 4710 1180
F., N 2252 2413 1192
PCE by data mining

(0 test), % - 5.34 8.42
Local DOE (8 tests), % 7.45 5.15 7.39
LHS (1000 tests), % 7.73 5.07 6.56

The matrix of D", D", M regrouped M and D"
in each group are shown in Fig. 7-11 after 12" ite-
ration. It can be seen that the existing design points
can be distributed into several small groups where
the weighting vectors tends to resemble each other.
This offers a good learning basis for new coming
design points.

In this optimization totally 113 potential design
optimums of robustness have been proposed during
meta-model’s construction and optimization itera-
tions, which means millions of simulations of dura-
bility objectives need to be run if all the robustness
is validated by a Monte-Carlo sampling. The size
of one local DOE for PCE calculation is set to 8.
If a PCE method without either inherited DOE
nor learning method has been applied, about 1000 si-
mulations would need to be run theoretically. With
the integration of inherited DOE, the total number
of simulations can be reduced to 802.

The learning algorithm permits to reduce further
22 % amount of simulations to 628 and the robust
estimation keeps the same level. The gain is encou-
raging when one single simulation takes a long time.
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No. Test (j)

Test (j)

No. Test (j)

No. test(j)
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R
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z

No. Test () No. Test (i)
| |
) 02 CEN 0 ] 0 02 o e 0s :
i € i
Fig. 7. Inter-design correlation matrix D* Fig. 10. Group result for the matrix M in Fig. 9.
for 91 design vectors by bipolarization algorithm with ¢, = 0.95

No. Test (/)

No. Test (i)

o 02 04
D

o
F 0.1
y €

Fig. 8. Inter-objective correlation matrix D
for 91 objective vectors

Fig. 11. Weighting matrix D" in the group of Fig. 10
(black lines mean the groups found in M)

Fig. 12 shows the comparison of the Pareto
front between a robust optimization with learning
and one without learning. It can be seen that there
are some local differences between two strategies,
but the tendency of durability objective and its ro-
bustness are close. Fig. 13 shows the number of de-
sign points suitable for learning algorithm and ave-
rage additional samples for one PCE calculation
according the optimization iterations. The curves
have oscillated at the beginning and become stable
; 2 o, e o 1 from 7" iteration. Most of design points are

" groupable from 7" iteration which means the test

No. Test ()

Fig. 9. Mixed design-objective matrix M for Fig. 7, 8 data base is complete especially at the region close to
with ¢, = 0.6, cp = 0.4 the Pareto front.
[ Hayka 53
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Robustness of Foy

Percentage of groupable points
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010~
\ o Reference point
009 L ——Pareto front alter 12" iteration with learning
! - - -Pareto front alter 12" iteration without learning
008 |
¢
007 |
006 |
005 |
0.04 L L L L L L |
0.5 0.6 0.7 0.8 0.9 1.0 1.1 12
Normalized Foy
Fig. 12. Comparison of Pareto front between
the optimization with or without learning
100 % F=—= = ¢
\\
oy N\
80 %/ \ s
o A
60%} NN z
\ ]
40 %| \—A—— Percentage of groupable E
| points H
—e—— Average of additional test | » E
20 %t v for one point £
\\ /A\ §
0 , o o "o —o - 40 %
0 2 4 6 8 10 12 14 3
No. Iteration
Fig. 13. Evolution of number of groupable numbers
(in triangles) and additional tests (in circle)
per point with iteration
CONCLUSION
In this paper a robust optimization method has
en proposed which aims to reduce the number

tests during the optimization and gives a global

view on the relationship between the design objec-
tives and their robustness. The integration of

a

learning algorithm based on data mining per-

mits to further reduce the necessary simulations.
The example shows the data mining plan is
suitable for small size data bases and once it is
constructed the estimation of robustness needs no
more simulations.

REFERENCES

1. Chatillon M. M. (2005) Méthodologie de Conception

Robuste Appliquée Aux Trains de Véhicules de Tourisme.
Doctoral dissertation, Ecully, Ecole Centrale de Lyon.

2. Dessombz O. (2000) Analyse Dynamique de Structures

54

Comportant des Paramétres Incertains. Doctoral Disser-
tation, Ecully, Ecole Centrale de Lyon.

10.

11.

12.

13

14.

15.

. Wiener N. (1938) The Homogeneous Chaos. American

Journal of Mathematics, 60 (4), 897-936. https://doi.org/
10.2307/2371268.

Xiu D., Karniadakis G. E. (2002) The Wiener-Askey
Polynomial Chaos for Stochastic Differential Equations.
SIAM Journal on Scientific Computing, 24 (2), 619-644.
https://doi.org/10.1137/s1064827501387826.

.Wul., Luo Z., Zhang Y., Zhang N., Chen L. (2013) Inter-

val Uncertain Method for Multibody Mechanical Systems
Using Chebyshev Inclusion Functions. International
Journal for Numerical Methods in Engineering, 95 (7),
608—630. https://doi.org/10.1002/nme.4525.

. Kim N. H., Wang H., Queipo N. (2004) Adaptive Reduc-

tion of Design Variables Using Global Sensitivity in Relia-
bility-Based Optimization. 10" AIAA/ISSMO Multidis-
ciplinary Analysis and Optimization Conferencep, 4515.
https://doi.org/10.2514/6.2004-4515.

Hu C., Youn B. D. (2011) Adaptive-Sparse Polynomial
Chaos Expansion for Reliability Analysis and Design of
Complex Engineering Systems. Structural and Multidiscip-
linary Optimization, 43 (3), 419-442. https://doi.org/ 10.
1007/s00158-010-0568-9.

.Knio O. M., Najm H. N., Ghanem R. G. (2001) A Sto-

chastic Projection Method for Fluid Flow: I. Basic For-
mulation. Journal of Computational Physics, 173 (2),
481-511. https://doi.org/10.1006/jcph.2001.6889.

. Eddy J., Lewis K. (2001) Effective Generation of Pareto

Sets Using Genetic Programming. Proceedings of DETC 01
ASME 2001 Design Engineering Technical Conferences
and Computers and Information in Engineering Confe-
rence. Pittsburgh, PA, Sept. 9-12, 2001, 132.

Loyer B. (2009) Conception Fonctionnelle Robuste Par
Optimisation Multicritéere de Systémes de Suspension
Automobile Passifs et Semi-Actifs. Doctoral Dissertation,
Ecully, Ecole Centrale de Lyon.

Allen T. T., Bernshteyn M. A., Kabiri-Bamoradian K. (2003)
Constructing Meta-Models for Computer Experi-
ments. Journal of Quality Technology, 35 (3), 264-274.
https://doi.org/10.1080/ 00224065.2003.11980220.

Acar E., Rais-Rohani M. (2009) Ensemble of Metamodels
with Optimized Weight Factors. Structural and Multidis-
ciplinary Optimization, 37 (3), 279-294. https://doi.org/
10.1007/s00158-008-0230-y.

.Dumont E., Khaldi M. (2018) Alternova Layer 1 User

Guide for Renault. Eurodecision, May.

Di Pierro F., Khu S. T., Djordjevic S., Savic D. (2004)
A New Genetic Algorithm to Solve Effectively Highly Multi-
objective Problems: Poga. Report Nr 2004/02, Center for
WaterSystems, University of Exeter.

Wang G. G. (2003) Adaptive Response Surface Method
Using Inherited Latin Hypercube Design Points. Journal
of Mechanical Design, 125 (2), 210-220. https://doi.org/10.
1115/1.1561044.

Received: 08.10.2019
Accepted: 10.12.2019
Published online: 31.01.2020

Hayka
urexHuka. T. 19, Ne 1 (2020)


https://doi.org/%20%0b10
https://doi.org/%20%0b10
https://doi.org/%2010
https://doi.org/10.1080/
https://doi.org/%20%0b10
https://doi.org/%20%0b10
https://doi/

