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Abstract. During the early development of a new vehicle project, the uncertainty of parameters should be taken into consi- 
deration because the design may be perturbed due to real components’ complexity and manufacturing tolerances. Thus,  
the numerical validation of critical suspension specifications, such as durability and ride comfort should be carried out with 
random factors. In this article a multi-objective optimization methodology is proposed which involves the specification’s  
robustness as one of the optimization objectives. To predict the output variation from a given set of uncertain-but-bounded 
parameters proposed by optimization iterations, an adaptive chaos polynomial expansion (PCE) is applied to combine a local 
design of experiments with global response surfaces. Furthermore, in order to reduce the additional tests required for PCE 
construction, a machine learning algorithm based on inter-design correlation matrix firstly classifies the current design points 
through data mining and clustering. Then it learns how to predict the robustness of future optimized solutions with no extra 
simulations. At the end of the optimization, a Pareto front between specifications and their robustness can be obtained which 
represents the best compromises among objectives. The optimum set on the front is classified and can serve as a reference for 
future design. An example of a quarter car model has been tested for which the target is to optimize the global durability based 
on real road excitations. The statistical distribution of the parameters such as the trajectories and speeds is also taken into  
account. The result shows the natural incompatibility between the durability of the chassis and the robustness of this durabi- 
lity. Here the term robustness does not mean “strength”, but means that the performance is less sensitive to perturbations.  
In addition, a stochastic sampling verifies the good robustness prediction of PCE method and machine learning, based on  
a greatly reduced number of tests. This example demonstrates the effectiveness of the approach, in particular its ability to save 
computational costs for full vehicle simulation. 
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Реферат. На начальном этапе разработки нового транспортного средства необходимо учитывать момент неопре- 
деленности параметров, поскольку конструкционные работы предполагают отклонения, вызванные сложностью  
изготовления  ряда  элементов  с соблюдением  производственных  допусков.  Поэтому  числовая  оценка критических  
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характеристик подвески, таких как долговечность и комфортные условия во время движения, должна проводиться с 
учетом факторов случайности. В статье предлагается применять многоцелевую методологию оптимизации, которая 
рассматривает надежность спецификации в качестве одной из задач. С целью прогнозирования конечного результата 
на основании заданного набора неопределенных, но ограниченных параметров, предлагаемых в процессе оптимиза-
ционных итераций, используется адаптивное полиномиальное хаотичное расширение для объединения локального 
проектирования экспериментов и глобальных поверхностей отклика. Кроме того, чтобы уменьшить количество  
дополнительных тестов, которые  необходимы для построения полиномиального хаотичного расширения, использу-
ется алгоритм машинного обучения, основанный на межпроектной корреляционной матрице, для проведения клас-
сификации текущих проектных точек с помощью интеллектуального анализа данных и кластеризации. Таким обра-
зом, появляется возможность прогнозировать надежность разрабатываемых оптимизированных решений без исполь-
зования дополнительных моделей. По завершении процесса оптимизации может быть получен фронт Парето между 
спецификациями и их надежностью, который представляет наилучшее компромиссное решение с поставленными 
целями. Оптимальный набор на данном фронте классифицируется и может являться ориентиром для проектирования. 
Примером этого может служить тестирование модели автомобиля с целью оптимизации его глобальной долговеч- 
ности на основе дорожных ситуаций. При этом статистическое распределение параметров, таких как траектории  
и скорости, тоже принимается во внимание. Результаты исследований показывают несовместимость между долговеч-
ностью шасси и надежностью этого параметра. В данном случае термин «надежность» не означает «прочность».  
В статье этот термин предполагает, что функционирование является менее чувствительным к каким-либо отклонени-
ям. Кроме того, стохастическая выборка подтверждает правильность прогноза надежности методом применения по-
линомиального хаотичного расширения и машинного обучения, в основе которого лежит значительное уменьшение 
количества тестов. Показана эффективность предлагаемого подхода, в частности отмечается возможность экономии 
расчетных затрат на разработку моделей транспортного средства. 
 

Ключевые слова: долговечность шасси, анализ данных, машинное обучение, многоцелевая оптимизация, полиноми-
альное хаотичное расширение, надежная конструкция  
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Introduction 
 

The robustness of vehicle specifications is  
given more and more attention in Renault because 
original designs during the development can be 
perturbed by many uncertain sources: actual road 
charges, manufacturing tolerances, aging of mate-
rials, etc. As a result, sometimes the validation of 
important specifications such as chassis’ durability 
may take a lot of time and resources to ensure  
the design is robust enough and can be satisfied all 
through the vehicle’s life cycle [1].  

In this paper, the term of robustness is defined 
as system’s ability of tolerating outside perturba-
tions. The robustness is an opposite notion of sen-
sitivity where the least variation of vehicle perfor-
mance is searched within the random input para- 
meters. Instead of analyzing the impact of each 
parameter on the final output, the robust optimiza-
tion focuses on minimizing the overall variations 
while the statistic characters of input are pre-
defined. Meanwhile, these two notions can easily 
be transformed after the result of a design of expe- 
riments is obtained.  

There are several numerical methods to calcu-
late the robustness of one given set of parameters 
under perturbation. 

• Monte-Carlo analysis is to generate random 
samples in uncertain spaces according to their dis-
tributions. The method is easy to integrate and re- 
liable but it requires a huge number of samples  
to eliminate the random effects of sampling. Other 
similar methods such as Latin Hypercubic Sam-
pling (LHS) or orthogonal design of experiments 
are proposed to reduce the total number of tests but 
are still expensive when the simulation itself  
is very heavy. 

• Min-Max analysis is to run simulations with 
the combination of upper and lower bounds of un-
certain parameter intervals to estimate the worst 
case under perturbation [1]. It needs less tests 
compared to random sampling and the result is 
reasonable as long as the effects of parameters are 
linear or quasi-linear. However, the statistic cha- 
racters of the systems cannot be obtained when 
only the bounds of interval are considered and  
the robustness estimation may put too much em-
phasis on the case of which the possibility can be 
neglect able.   

• Analytical methods such as Taylor expansion 
or direct interval analysis [2] are very efficient  
because only partial differential equations of the 
systems are needed instead of a large amount of 

https://doi.org/10.21122/2227-1031-2020-19-%0b1-
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simulations. However, the mathematical expres-
sions in the industrial problems are difficult to ob-
tain while simplifying a complex system into an 
academic model may raise the problem of repre-
sentativity. 

One of the targets during project development 
is to integrate the robustness into the optimization 
procedure where the optimum of vehicle specifica-
tions and their robustness are searched at the same 
time. It becomes even more important to reduce 
the additional simulation number. In this article,  
an approach based on polynomial chaos expan- 
sion (PCE) is applied where only a limited local de-
sign of experiments is need for each design point. 

The Hermite polynomial chaos was first intro-
duced by Wiener [3] to model stochastic response 
of a system under Gaussian distributed parameters. 
Then it has been extended into other type of or-
thogonal polynomial bases according to diffe- 
rent probability distributions [4, 5]. In this study 
Chebyshev polynomials of the second kind have 
been applied, which fits better real industrial un-
certainties. 

The target of polynomial chaos expansion is to 
establish a relationship between a system output 
and parameter inputs based on a given series of 
polynomials. Once the coefficient in front of each 
polynomial is calculated, system can be described 
and the robustness can be calculated. For a black 
box system additional tests are needed in order  
to decide the maximum order and important inter- 
active terms of polynomials included in this  
expansion.  

This paper proposes a multi-objective optimi-
zation plan with the integration of adaptive-sparse 
polynomial chaos expansions. The polynomial 
chaos expansion is calculated by a projection 
method which reuses response surfaces constructed 
in the optimization process. To further reduce  
the additional tests, a machine learning algorithm 
based on data mining is applied to justify by ad-
vance the quality of response surface before run-
ning the local design of experiments.  

Section II of this paper introduces the construc-
tion of polynomial chaos expansion as well as its 
integration into the optimization strategy. In sec-
tion III a data mining and machine learning algo-
rithm is presented which aims to further reduce 
sample numbers but keep the accuracy of robust-

ness prediction. Section IV demonstrates the opti-
mization of a quarter-car example with the pro-
posed approach. 

 
Robust optimization with PCE 
 

Introduction of polynomial chaos expansion 
and Chebyshev polynomials of the second kind. 
An N-dimensional random variable vector 

( )1 2, , ,  nx x x= …x  is considered. For each input 

variable Γ ,i ix ∈ where Γi  is a one-dimension ran-
dom space, its probability density function (PDF) 
can be defined by ( ).i ip x  Assuming that all the ran-
dom variables are independent, the overall PDF P(x) 
can be defined as 

 
 

( ) ( ) ( ) ( )1 1 2 2 N nP p x p x p x= …x   

1 2in Γ Γ Γ Γ .n= …                        (1) 
 

 

The system at one set of parameters х an be 
written as a converged series of polynomial basis 
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where ( ) ( ) ( ) ( ){ }1 2 , , ,  nξ = ξ ξ … ξx x x x – set of 
ran-dom variables obtained by normalization of x  
according to known mean values and the standard 
deviations; ( )( )j

nφ ξ x  – n-dimension chaos of or- 

der j in terms of ( ).ξ x   
The inner product of two orthogonal poly- 

nomial basis can be expressed as  
 

2, δ ,i j ij iφ φ = φ                        (3)  
 

where δij – Kronecker delta, δij  = 1 when i = j and 

δij = 0 when .i j≠   
To simplify the expression, the equation (2) is 

truncated to maximum order M and it includes only 
univariatе and bivariatе terms, which can be re-
written as  
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The form of the polynomial basis iφ  is defined 
by the distribution types of random parameters. 
Chebyshev polynomial of the second kind is ap-
plied in this study. As its probability density func-
tion corresponded is Wagner semicircle distribu-
tion defined in (Fig. 1) [ ]1.1 .−  The semicircle law 
is more suitable to industry problems where the 
parameters have more weights around the design 
values and will never go to infinity. The polyno- 
mials can be defined by a recurrence method:  

 

( ) ( ) ( )1 1ξ 2 ξ ξ ,n i n i n iU xU U+ −= −   

for 1n ≥  
( ) ( )0 1with ξ 1; ξ 2ξi i iU U= =              (5) 

          [ ]and ξ 1.1 ,  i ∈ −  
 

where ξi  – respects a Wagner semicircle distri- 
bution.  

The distribution function is normalized to make 
sure the integration in [–1.1] equals to 1, so in fact 
it becomes a semi ellipse 

 

( ) 22ξ  1 ξ .
πi iw = −                      (6) 

 

The equation (3) can be expressed as for two 
one-dimension polynomials 

 

( ) ( ) ( )
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In equation (4) coefficients si are unknown  
and need to be calculated. For a black-box system, 
two non-intrusive methods exist to calculate si.  

• Regression method: the order and the terms 
of the expansion are assumed a priori. The coeffi-
cients are then calculated by linear regression 
method based on the samples around the reference 
point. By iterations the algorithm will decide 
whether to add or remove terms from the expan-
sion until all the important terms are included [6]. 

• Projection method: an analytical expression 
has been pre-defined used to represent the black-
box system. Then based on this expression, each 
coefficient is calculated one by one according to 
orthogonal projection. Additional samples are also 
necessary to justify if the expansion order has been 
converged [7]. 

In the optimization process expressed in Sec-
tion III, the analytical expressions for the result 
outputs have already been calculated. The projec-
tion method will be introduced in detail and ap-
plied. Another advantage for the projection method 
is that the accuracy of robustness estimation de-
pends more on the quality of analytical expressions 
but is less sensitive to the number of samples com-
pared to the regression method. 

Assuming f(x) is a performance function de- 
fined in the design space, one can obtain by multi-
plying ( )jφ ξ  to both sides of (4): 
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where ( )2
jφ ξ – constant; ( ) ( )jf φ ξx – calcu-

lated by multi integration. 
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Fig. 1. Transformation of a real design parameter to a normalized random variable of Wagner semicircle distribution
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The reference [8] has proposed a decomposi-
tion method of ( ) f x  and the numerator of equa-
tion (9) can be expanded into univariate and biva-
riate terms 
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where k
js  – coefficient for the jth order univariate 

polynomial term of ( )ξ ;kx  
1

,k l
j js  – coefficient for 

the jth order bivariate polynomial term of ( )ξ kx  

and ( )ξ lx  (j1
th order for ( )ξ kx  and 1( )j j− th or-

der for ξ( ));lx ( ),μi ix  – vector that replaces all the 
random variables by its reference value except ;ix  

( )1 2 1 2,, ,μi i i ix x  – vector of reference values exclu- 

ding 
1 2

;,i ix x  ( )f μ  – function value when all the 
variables are equal to the reference ones. 

It can be noticed that equations (10) and (11) 
require only one- or two-dimensional integrations. 
The higher order interaction terms are neglected 
because of the weak non-linearity in mechani- 
cal systems, which saves greatly the computational 
resources.  

One determination coefficient R2 is calcu- 
lated to justify the correlation between the PCE 
and test results 
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where J – order of the PCE; xI – Ith sample of local 
experiment design; ( )I

testf x  – test result of this 
sample.  

It can be seen that the quality of prediction is im-
proved with ( )2R J  approaching to 1.  

When the PCE order is increased by iterations, 
the PCE is converged if the difference of 2R  bet- 
ween two orders is smaller than a threshold ε1 
which means including new terms has nearly zero 
impact on the expansion  

 

( ) ( )2 2
11 .εR J R J− − <                (13) 

 

Furthermore, as 2D-integration is usually more 
expensive to calculate, another indicator is de- 
fined to justify if the bivariate terms of ( )ξ kx  and 

( )ξ lx  for PCE have converged before the total 
expansion 
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If the equation (14) is satisfied it means the 
contribution of jth order bivariate terms of ( )ξ kx  
and ( )ξ lx  is negligible with respect to the expan-
sion and for the next order this term will not be 
calculated. A summary of the procedure of calcula-
tion of PCE around one reference solution can be 
seen in Fig. 2. 

Once the PCE is constructed, the mean value and 
standard deviation of ( )f x  can be estimated by: 
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Fig. 2. Summary of PCE calculation by PCE method  
for one reference solution  

 
Multi-objective optimization. Chassis systems 

has multiple demands on durability, ride comfort 
and handling, etc. while each of them is often in-
compatible with the others. Therefore, during the 
design phase, the optimization of chassis system is 
naturally multi-objective where the best compro-
mises are searched. 

The robustness of objectives included in the 
optimization plan are also integrated and listed as 
the objectives for optimizing. This step tends to 
make the objectives even more incompatible be-
cause empirically the optimums are less robust 
compared to the less good solutions. Thus, this 
study aims to find the relationship between the ob-
jectives and their robustness and to propose the 
optimums which are less sensitive to perturbations. 

The mathematical expression of multi-objective 
optimization can be expressed as:  

– minimize: 
 

( ) ( ) ( ) ( ){ }1 2,  , , ;mF f f f= …x x x x        (17) 
 

– under the constraints: 
 

( ) 0, 1, ..., ;jh j q= =x  
 

( ) 0, 1, ..., ;kg k p≤ =x                   (18) 
 

min max , 1, ,r n≤ ≤ = …x x x  
 

where x – 1n ×  vector of design parameters which 
forms a design space; min  ,x  and maxx  – lower and 
upper bounds of the design space; F(x) – 1m×  
vector of objective functions for minimizing; 

( ) jh x , ( )  kg x  – equality or inequality constraints 
of the system.  

Instead of summing all the compositions f(x)  
in F(x), the optimization will treat each objective 
separately. As a result, the optimization plan will 
propose a set of compromised optimums instead  
of only one solution, which will form a Pareto 
front [1, 9, 10]. The definition of one Pareto opti-
mum is one which is not dominated by any other 
solutions. There may exist one or more solutions 
which have better performances in some objec-
tives, but they must have worse solutions in other 
aspects than those of Pareto optimums.  

Another characteristic of industrial problems  
is that the systems are usually black-box models 
and the mathematical expression of F(x) does  
not exist. Therefore, a Meta-model ( )MetaF x  will 
be constructed before the optimization iterations 
begin [11, 12]. ( )MetaF x  consists of several re-
sponse surfaces which describe the black-box sys-
tem with different combination of polynomials. 
The equation (17) can be replaced by as:  
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  (19) 

 

where ( ) | ( 1... )x =
i

j
iRSf j l  – jth response surfa- 

ces for ( )xif  constructed from an initial design  
of experiments (DOE) in the design space; il  – total 

Саlculate ith order  
uni-coefficients 

Саlculate ith order  
bivariate coefficients 

(i – 1)th bivariate terms  
has converged to ε2 

< ε1 
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number of response surfaces configurated for fi(x); 
0 ( )

iRSf x  – new response surfaces for fi(x) who sums 
all the response surfaces regarding to their quality 
by cross validation [13].  

The meta-model can then replace the black-box 
model and be used with the genetic optimization 
algorithm NSGA-II [14, 15].  

For the robustness objectives, the calculation of 
PCE is based on the Meta-model constructed in 
this step. As the Meta-model has several expres-
sions to represent the system, several estimations 
of PCE can also be made. The final robustness  
is a weighted sum of these estimations according  
to the quality of response surfaces: 

 

( )( ) ( )( )
0

0

1σ σ ; 
i

ii

l
j

i j RSl
jji

f p f
p =

=

= ∑
∑

x x     (20) 

 

( )( )( )2
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1 ,
1

i

j
j

final RS

p
R f

=
− x

            (21) 

 

where ( )( )σ x
i

j
RSf  – jth PCE robustness estimation 

for ( )xif  based on the projection of its jth model 

( );x
i

j
RSf  ( )( )2 x

i

j
final RSR f – final determination 

coefficient for ( )( )σ xj
RSif  when the PCE is con-

verged to 1ε  (see (13)); ip  – weight indicator 
which judges the quality of ith response surface by 
comparing it with 1.  

The procedure of robust multi-objective opti-
mization is summarized in Fig 4. By iterations, the 
potential optimums can be proposed by the genetic 
algorithm based on the objectives’ response sur-
faces. The proposed solutions and their robustness 
will then be validated by real numerical simula-
tions, of which the results are reused to improve 
the quality of response surfaces. If the optimization 
is converged, the solutions proposed will form  
a Pareto front.  

It should be noted that although both the res- 
ponse surfaces and PCEs are in the form of poly- 
nomials, the domain of these polynomials are dif-
ferent. For response surface, the variables can  
cover any values in the design space while for PCE 
the variables are limited in the neighbourhood of 
one design value. PCE describes the local behavior 

of a specific point on the response surface. That’s 
why the global quality of response surface has  
a great influence on the robustness estimation.  

 
Application of data mining  
and machine learning  
 
The calculation of PCE by projection method 

requires much fewer tests compared to purely ran-
dom sampling methods such as Monte-Carlo, 
which has been shown by the example in Section IV. 
However, the integration of robustness into the 
optimization requires hundreds of PCE calculation 
which is still expensive even if the number of tests 
required to compute the robustness at one point has 
been greatly reduced. Two approaches have been 
applied at the same time to further reduce the 
number of samples tested for each point.  

The first approach is called inherited design  
of experiments referenced in [13]. The simulations 
will stock in a data base and be reused in the local 
DOE for future calculation of PCE if there already 
exist test results in a new coming point’s neighbour-
hood. With the enrichment of the data base, the extra 
number of simulations tends to be reduced. 

The second approach is to exploit further the 
data base with a data-mining algorithm and to learn 
to construct the PCE without extra samples. In the 
procedure of PCE calculation by projection method 
in Section II, the local DOE is used to converge  
the projected terms and orders in PCE by analyzing 
the quality of approximation between the PCE  
response surfaces and the simulation results. Unlike 
the regression method, where the coefficients of 
polynomials are calculated directly from the DOE 
results, the projection method depend mostly on 
the modelling quality of meta-model. If one can 
predict the weighting factor in equation (20) of 
each response surface of meta-model on the point 
to be studied, there will be no need to run extra 
simulations for PCE calculations. 

The data-mining strategy referenced in [10] 
which is firstly used for post-processing of Pareto 
front starts firstly by calculating the normalized 
correlation distances of different information  
between each pair of design points i and j: 
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P P
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where ,x
ijD  ,F

ijD P
ijD  – distance of input variables, 

objectives and weighting factors of design points i 
and ;j  N  – number of existing simulations in  
the data base; xi – ith vector of input parameters; 

iF  – vector of objectives defined in equation (17); 
iP  – vector of weighting factors calculated when 

combining the estimations from response sur- 
faces in (21).  

According to the definition, the correlation  
between two designs will be good when 1.  ijD →   

The inter-design matrix ,xD  inter-objective mat-

rix FD  and weighting factor matrix PD  are sym-
metric matrix and can be used to analyze  
the correlation of each pair of points in the data 
base (Fig. 7, 8). Another mixed matrix M can be 
defined to show the correlation of both input and 
output between two designs: 

 

( ) ( ) ;x Fc cx F
ij ij ijM D D=  

                     (25) 
1,x Fc c+ =  

 

where ,xc  Fc  – coefficients of mixture defined 
between 0 and 1.  

In order to make the matrix more readable,  
a bipolarization algorithm cited in [10] will used to 
arrange the order of design point according to their 
resemblance level. The algorithm starts with  
finding the two most different design point in Мij  
and grouping their neighbors based on a re- 
semblance threshold .s This operation is looped for  
the rest of non-grouped points until all the points 
are arranged. The algorithm schema is shown  
in Fig. 3. 

An example of the result after bipolarization is 
shown in Fig 3. It is a process similar to clustering 
method in data mining which also regroups  
the existing solutions according to several fea- 
tures (in this study the parameters and objectives). 
The typologies of the database can be exploited as 

a post-processing to find the orientation of multi-
objectives in each group. The grouping result will 
also serve as a base for learning in the next steps. 

 

 
 

Fig. 3. Algorithm schema for bipolarization method  
of data mining 

 
Fig. 11 shows P

ijD  in the groups obtained  
by mixed design-objective matrix M in Fig. 10.  
It shows that for the resembling design points,  
the weighting factors tend also to be alike. It is rea-
sonable because the points in the same group also 
tend to be neighborhood in the meta-model, where 
the modelling quality of response surfaces is simi-
lar in this area. The neighbourhood has been dis-
placed for a different group thus the modelling 
quality of each response surface has also changed. 
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The principle of learning is that if the new design 
points of which the robustness is to be calculated 
fall into one existing group, the quality of estima-
tion of each response surfaces can also be learned 
based on the P

ijD  information in the group. As a 
result, the calculation needs no extra simulation. 

The algorithm of learning for a new coming de-
sign point can be summarized as following: 

1) a new line/column is added into the correla-
tion matrix ,xD  FD  to make two ( )( )1 1n n+ +  
matrix by calculating the correlation distances 
from the new point to the data base; 

2) the minimum correlation distance is to be 
found between the new point and each existing 
group. A pre-defined threshold will judge if the new 
coming point belongs to any group in the data base;  

3) if no groups can be referenced. The robust-
ness will be calculated by the local DOE method  
in Section II. If there exists at least one group  
that can include the new design point, the vector P 
of weighting factors can be learned from those in 
this group. The combined PCE estimation can be 
obtained without running simulations. 

 

Example with a quarter car model  
 

A quarter car model has been applied to 
demonstrate the robust multi-objective optimiza-
tion strategy proposed in this paper. The model has 
been shown in Fig. 5: 1m  – unsprung mass which 
sums the mass of the wheels and a part of half  
suspension; 2m  – sprung mass of a quarter of the 
car body; 1,k  1c  – tire stiffness and damping rate; 

2 ,k  2c  – suspension vertical stiffness and damping 

rate; 0x  – coordinate of the road profile; 1 2,x x  – 
vertical displacements of the unsprung/sprung 
masses.  

In this example it is assumed that the masses 

1 2,m m  and the properties of tire 1 1,k c  are given 
and the target is to optimize the properties of sus-
pension parameters: 2k  and 2.c  The non-linearity 
of damping ratio 2c  has been considered and thus 
it consists of four values which define different 
slopes of force/velocity at high & low velocity and 
compression & rebound phases 2 , 1...4 .ic i( = )   

 
 

Fig. 4. Summary of the optimization procedure with the integration of PCE calculation and learning algorithm 
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Fig. 5. A quarter car model with its definition of parameters 
 

The objective in optimization is to minimize 
the equivalent damage force on the m1 when x0 is 
passing a Belgian blocks test track. The definition 
of equivalent damage force is based on Basquin 
fatigue low   

 

1

max
 

2
,

B
i i

ed
d n

F F
N

 
=   

 

∑                 (26) 

 

where edF  – equivalent damage force; maxF  – ma- 
ximum force in Basquin model when total da- 
mage D = 1; N – number of cycles corresponding  
to D = 1; di, ni – cumulative damage and its repeti-
tions in the force signal in the simulation which are 
obtained by rainflow-counting algorithm; B – con-
stant number of the Basquin model.  

The second objective is the robustness of Fed 
due to the uncertainty added in the system: the va- 
riation of k2 and 2 , 1...4,ic i =  to represent manu-
factory tolerances and aging during usage aсcom-
panied with passing velocity and road amplitudes 
as validation process perturbations.  

The non-dominated design points between two 
objectives are shown in Fig. 6 with the PCE me- 
thod and learning algorithm. The optimum solu-
tions in durability have relatively worse robustness 
due to perturbations. Tab. 1 shows the comparison 
between a much larger sampling size (1000 tests) 
with Latin Hypercubic method, the local DOE with 
only 8 tests and learning algorithm without tests 
for 3 design points. The reference point is the de-
sign point when the optimization starts. Optimized 
point 1 is one of the optimums orientated to ro-
bustness and optimized point 2 is one oriented to 
durability. It can be seen that the PCE method suc-
ceeded in produce the closed estimations as ones 
from a larger sampling especially for the first two 
points. Estimation for the design points oriented to 
durability is less good but it still shows the ten- 

dency of the relationship between the objective and 
its robustness.  
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Fig. 6. Evolution of Pareto front between normalized  
equivalent damage force and its robustness  
(The damage force of starting point is 1)  

 

Table 1  
Comparison of PCE estimations obtained  

by different methods for 3 points 
 

 Ref. point Opt. point 1 Opt. point 2 
 k2, N/m  20500 10250 10250 
 c21, Ns/m 250 790 260 
 c21, Ns/m 2220 4440 1100 
 c21, Ns/m 2360 4720 1220 
 c21, Ns/m 2360 4710 1180 
 Fed, N 2252 2413 1192 
 PCE by data mining 
 (0 test), % – 5.34  8.42  
 Local DOE (8 tests), % 7.45  5.15  7.39  
 LHS (1000 tests), % 7.73  5.07  6.56  

 
The matrix of  Dx, DF, M regrouped M and DP 

in each group are shown in Fig. 7–11 after 12th ite- 
ration. It can be seen that the existing design points 
can be distributed into several small groups where 
the weighting vectors tends to resemble each other. 
This offers a good learning basis for new coming 
design points.  

In this optimization totally 113 potential design 
optimums of robustness have been proposed during 
meta-model’s construction and optimization itera-
tions, which means millions of simulations of dura-
bility objectives need to be run if all the robustness  
is validated by a Monte-Carlo sampling. The size  
of one local DOE for PCE calculation is set to 8.  
If a PCE method without either inherited DOE  
nor learning method has been applied, about 1000 si-
mulations would need to be run theoretically. With 
the integration of inherited DOE, the total number 
of simulations can be reduced to 802. 

The learning algorithm permits to reduce further 
22 % amount of simulations to 628 and the robust 
estimation keeps the same level. The gain is encou- 
raging when one single simulation takes a long time.  
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Fig. 7.  Inter-design correlation matrix Dx  

for 91 design vectors 
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Fig. 8. Inter-objective correlation matrix DF  

for 91 objective vectors 
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Fig. 9. Mixed design-objective matrix M for Fig. 7, 8 
with cx = 0.6, cF = 0.4 
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Fig. 10. Group result for the matrix M in Fig. 9.  

by bipolarization algorithm with cs = 0.95 
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Fig. 11. Weighting matrix DP in the group of Fig. 10  
(black lines mean the groups found in M) 

 
Fig. 12 shows the comparison of the Pareto 

front between a robust optimization with learning 
and one without learning. It can be seen that there 
are some local differences between two strategies, 
but the tendency of durability objective and its ro-
bustness are close. Fig. 13 shows the number of de-
sign points suitable for learning algorithm and ave- 
rage additional samples for one PCE calculation  
according the optimization iterations. The curves 
have oscillated at the beginning and become stable 
from 7th iteration. Most of design points are  
groupable from 7th iteration which means the test 
data base is complete especially at the region close to 
the Pareto front.  
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Fig. 12. Comparison of Pareto front between  
the optimization with or without learning 
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Fig. 13. Evolution of number of groupable numbers  
(in triangles) and additional tests (in circle)  

per point with iteration 

 
CONCLUSION 
 
In this paper a robust optimization method has 

been proposed which aims to reduce the number  
of tests during the optimization and gives a global 
view on the relationship between the design objec-
tives and their robustness. The integration of  
a learning algorithm based on data mining per- 
mits to further reduce the necessary simulations. 
The example shows the data mining plan is  
suitable for small size data bases and once it is 
constructed the estimation of robustness needs no 
more simulations.  
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