МОДЕЛИРОВАНИЕ АКУСТИЧЕСКИХ ПОЛЕЙ, СОЗДАВАЕМЫХ ПРИ УЛЬТРАЗВУКОВОЙ АНГИОПЛАСТИКЕ, МЕТОДОМ ГРАНИЧНЫХ ЭЛЕМЕНТОВ

Кандидаты техн. наук, доценты СТЕПАНЕНКО Д. А., МИНЧЕНЯ В. Т.

Белорусский национальный технический университет

Эффективность разрушения материала тромба при ультразвуковой ангиопластике зависит от степени развития кавитации. Интенсивность кавитации, в свою очередь, определяется значением амплитуды акустического давления, создаваемого головкой волновода в окружающей жидкой среде (крови). Для возникновения кавитации величина интенсивности ультразвука, соответствующая амплитудному значению акустического давления, должна превышать порог кавитации. Теоретические и экспериментальные исследования показывают, что амплитудный показатель акустического давления, создаваемого волноводом в жидкости, при постоянном значении амплитуды колебательных смещений зависит от формы рабочего окончания (головки) волновода [1, 2]. В частности, теоретические расчеты с помощью метода конечных элементов (МКЭ) показывают, что при диаметре головки 1 мм, частоте ультразвука 23,5 кГц и амплитуде колебательных смещений 60 мкм сферическая головка создает максимальную амплитуду акустического давления 300 кПа, плоская головка – 550 кПа, а вогнутая сферическая головка - 1100 кПа [1]. Увеличение диаметра головки приводит к росту давления. Влияние формы головки на амплитуду акустического давления также косвенно подтверждается результатами экспериментальных исследований скорости разрушения тромбов in vitro [2]. В частности, диаграмма зависимости убыли массы тромба от интенсивности ультразвука для различных форм головки при постоянном времени ультразвукового воздействия приведена на рис. 1.

Представленные результаты позволяют расположить волноводы с различными формами головки в порядке убывания их эффективности следующим образом: волновод с плоской головкой с отверстием (WFHO), волновод с плос-

Наука итехника, № 6, 2013 Science & Technique кой головкой (WFH), волновод со сферической головкой (WSH), волновод со сферической головкой с отверстием (WSHO).

Рис. 1. Зависимость убыли массы тромба от интенсивности ультразвука
для различных форм головки волновода:
1 – ВСФ; 2 – ВПФ; 3 – ВСФО; 4 – ВПФО

Теоретические расчеты параметров акустического поля, создаваемого волноводом в жидкости, обычно проводятся с помощью МКЭ [1, 3, 4]. Однако необходимо отметить, что решение подобных задач (внешних задач акустики) с помощью МКЭ не является оптимальным с точки зрения производительности вычислений. Дифференциальное уравнение Гельмгольца, пространственная дискретизация которого производится при решении внешних задач акустики с помощью МКЭ, требует задания граничных условий на поверхности излучателя и на бесконечности (условия излучения Зоммерфельда). Необходимость учета граничных условий на бесконечности требует конечноэлементной дискретизации большой (по сравнению с размерами излучателя) области пространства вокруг излучателя с целью имитации реального бесконечно-протяженного пространства. Это приводит к значительному увеличению числа конечных элементов и продолжительности расчета. Более эффективным способом решения внешних задач акустики является применение метода граничных элементов

(МГЭ) [5, 6]. Данная статья посвящена изучению возможности применения МГЭ для теоретического анализа акустических полей, создаваемых при ультразвуковой ангиопластике.

Методика моделирования. Моделирование акустического поля волновода с помощью МГЭ производили с использованием программы с открытым кодом OpenBEM^{*}, реализованной в виде библиотеки функций для MatLab [7]. По сравнению с МКЭ, МГЭ имеет следующие преимущества:

 гранично-элементная дискретизация необходима только на поверхностях излучателей и отражателей акустических волн. Это позволяет сократить общее число дискретных элементов и вычислительную сложность задачи;

2) условия излучения Зоммерфельда автоматически удовлетворяются, так как они учтены при переходе от дифференциального уравнения Гельмгольца к интегральному уравнению Кирхгофа – Гельмгольца, пространственная дискретизация которого используется при решении акустических задач с помощью МГЭ.

Для оценки эффективности применения МГЭ для моделирования ультразвуковой ангиопластики была рассмотрена упрощенная задача расчета акустического поля, создаваемого волноводом в полубесконечной жидкой среде. В случае необходимости рассматриваемая задача может быть приближена к реальным условиям экспериментов *in vivo* и *in vitro* путем введения дополнительных границ с импедансными граничными условиями, имитирующих стенки кровеносного сосуда или пробирки. Схематическое изображение рассматриваемой модели приведено на рис. 2а.

В случае продольных колебаний волновода 1 граничные условия (распределение нормальной составляющей колебательной скорости) на границе 2 его контакта с жидким полупространством 3 будут осесимметричными. В совокупности с геометрической осевой симметрией волновода это дает возможность использования двумерной осесимметричной модели. Решатель осесимметричных задач реализован в ОрепВЕМ в виде модуля AxiBEM, основанного на осесимметричной формулировке уравнения Кирхгофа – Гельмгольца [8]. Практическая применимость представленной на рис. 2а модели ограничена присутствием бесконечной границы 4 между жидким полупространством 3 и полубесконечной газообразной средой 5. Вследствие своей бесконечности такая граница не может быть реализована в геометрической модели задачи. Необходимость рассмотрения границы 4 может быть устранена в случае использования метода зеркального источника, применяемого для анализа излучения акустических волн в полупространство, ограниченное импедансной плоскостью с импедансом Z [9].

Рис. 2. Модели излучения волновода: а – в полубесконечной жидкой среде; б – с зеркальным излучателем в бесконечной жидкой среде

Основная идея метода состоит во введении дополнительного фиктивного излучателя 1', являющего зеркальным изображением первичного излучателя 1 относительно границы полупространства (рис. 2б). В случае Z = 0 (акустически мягкая плоскость) излучатели должны создавать противофазные акустические давления, а в случае $Z = \infty$ (акустические давления, а в случае $Z = \infty$ (акустически жесткая плоскость) – синфазные давления. Поскольку в рассматриваемой задаче $\rho_1 c_1 << \rho_2 c_2$, где ρ_1 и c_1 – плотность и скорость звука для газообразной среды; ρ_2 и c_2 – плотность и скорость звука для жидкой среды, граница 4 может рассматриваться как акустически жесткая (идеально отражающая). Так как для гармонических волн

$$\mathbf{v}_0 = -\frac{1}{j2\pi f\rho} \operatorname{grad} p_0,$$

где \mathbf{v}_0 – вектор амплитуды колебательной скорости; p_0 – амплитуда акустического давления;

Наука итехника, № 6, 2013 Science & Technique

^{*} Авторы выражают благодарность профессору Vicente Cutanda Henriquez (Syddansk Universitet, Дания), любезно предоставившему программу OpenBEM.

f – частота колебаний; ρ – плотность среды; j – мнимая единица, в случае синфазных акустических давлений у-составляющие векторов колебательной скорости первичного и зеркального источников будут иметь противоположные знаки. Результирующее акустическое поле, создаваемое первичным и зеркальным источниками в однородной бесконечной среде без импедансной плоскости, будет идентично акустическому полю, создаваемому первичным источником в полупространстве, ограниченном импедансной плоскостью.

Подобный метод зеркального источника используется в электростатике для расчета электрического поля точечного заряда, находящегося вблизи проводящей плоскости [10, с. 56]. Длину L погруженной в жидкость части волновода определяли из условия четвертьволнового резонанса на частоте f = 25 кГц. Граничные условия задавали в виде распределения нормальной составляющей v_n вектора амплитуды колебательной скорости на границе волновода с жидкостью. В случае продольных колебаний для цилиндрической части волновода $0 \le y \le L_1$, где L_1 – длина цилиндрической части, можно принять граничное условие $v_n(y) = 0$. Это условие основано на допущении, что величина радиальной деформации волновода значительно меньше величины продольных деформаций. Для участка $L_1 < y \le L$ (головка волновода) принимали граничное условие

 $v_n(y) = |\mathbf{v}_0| |n_y(y)| \operatorname{sgn}(n_y(y)),$

где $|\mathbf{v}_0|$ — модуль вектора амплитуды колебательной скорости; $n_y(y)$ — *у*-составляющая внешней единичной нормали к границе волновода.

В этом условии пренебрегают изменением амплитуды колебательной скорости на протяжении рассматриваемого участка, так как $L-L_1 \ll L$. Модуль вектора амплитуды колебательной скорости рассчитывали по формуле

$$|\mathbf{v}_0| = 2\pi f \xi_0$$

где $\xi_0 = 10$ мкм – амплитуда колебательных смещений.

Такое же граничное условие с противоположным знаком было принято для головки зеркального излучателя.

При решении трехмерных задач с помощью OpenBEM возможно использование генерации граничных элементов с помощью внешних программ (например, применяя программное обеспечение для моделирования с помощью МКЭ, в частности конечные элементы типа SHELL в ANSYS) с последующим импортом. Для этих предусмотрены функции readnodes целей ('nlist.nod') и readelements('elist.ele'), где nlist. nod - имя файла, содержащего номера и координаты узлов, elist.ele - имя файла, содержащего номера элементов и номера принадлежащих им узлов. Эти функции также могут применяться с двумерными моделями, однако в решении двумерных задач ОрепВЕМ использует трехузловые конечные элементы, а конечные элементы типа ВЕАМ, применяемые для построения сетки на границах в ANSYS, являются двухузловыми.

В связи с этим мы использовали генерацию граничных элементов с помощью внутренних инструментов OpenBEM. Геометрия границы осесимметричного излучателя описывается в OpenBEM в виде последовательности прямолинейных и дуговых сегментов с помощью матрицы segments, содержащей информацию о координатах граничных точек и радиусах кривизны сегментов, а также сведения о количестве граничных элементов, используемых для разбиения каждого из сегментов. Генерация граничных элементов осуществляется с помощью функции nodegen (segments). При решении рассматриваемой задачи сегменты генерировали с помощью ANSYS путем разбиения границы излучателя на конечные элементы типа ВЕАМ. Координаты граничных точек сегментов импортировали в OpenBEM с помощью функций readnodes и readelements.

Для подтверждения достоверности результатов, полученных с помощью МГЭ, задачу также решали с помощью МКЭ с использованием модуля Acoustics Module программы COMSOL Multiphysics. Задачу рассматривали как осесимметричную проблему о вынужденных колебаниях волновода, взаимодействующего с жидкостью (тип анализа "Acoustic-Structure Interaction → Frequency response analysis"). Геометрическая модель состояла из двух областей: области волновода и области жидкости, ограниченной акустически жесткой плоскостью (поверхность раздела жидкости и газообразной среды) и полусферической поверхностью с излучательными граничными условиями для сферических волн. Излучательные граничные условия позволяют исходящим волнам покидать область моделирования без отражений [11; 12, с. 79]. Вектор амплитуды колебательного ускорения частиц жидкости вблизи поверхности волновода был принят равным вектору амплитуды нормального ускорения поверхности (граничное условие типа Normal acceleration). Колебания волновода рассматривали с учетом давления, создаваемого жидкостью на его поверхность (нагрузка типа Fluid load). Вынуждающая нагрузка была приложена в виде заданного колебательного смещения рабочей

поверхности головки волновода (граничное условие типа Prescribed displacement). Амплитуда смещения была принята равной 10 мкм, а частота – 25 кГц. Перемещения узловой плоскости волновода, совпадающей с поверхностью раздела жидкой и газообразной сред, были ограничены по всем степеням свободы.

Результаты моделирования и их обсуждение. Результаты расчета амплитуды акустического давления на поверхности волновода со сферической головкой с помощью МГЭ приведены на рис. За. Нумерация узлов граничных элементов изменена таким образом, чтобы они располагались в порядке увеличения значений дуговой координаты, измеряемой вдоль границ зеркального и первичного излучателей в направлении от точки (0, -L) к точке (0, L). Левая часть графика соответствует зеркальному излучателю, а правая – первичному.

Рис. 3. Результаты расчета амплитуды акустического давления: а – с помощью МГЭ, поверхностное распределение; б – с помощью МКЭ, пространственное распределение согласно [1]; в – с помощью МКЭ, пространственное распределение

Механика

Графики амплитуды акустического давления и его фазы (рис. 4) являются симметричными, то есть первичный и зеркальный излучатели создают синфазные акустические давления. Это согласуется с принятыми граничными условиями. На рис. Зб и Зв для сравнения представлены результаты расчета акустического поля волновода с помощью МКЭ согласно [1] и настоящему исследованию. Из сравнения приведенных графиков следует, что во всех случаях имеется основной максимум амплитуды акустического давления (основной лепесток диаграммы направленности), соответствующий точке (0, L), и вторичный максимум амплитуды акустического давления (боковой лепесток диаграммы направленности), соответствующий точке на задней части поверхности головки $(n_{y}(y) < 0)$. Значение амплитуды акустического давления, рассчитанное с помощью МГЭ, согласуется со значением, рассчитанным с помощью МКЭ (300 кПа – при амплитуде коле-

бательных смещений $\xi = 60$ м согласно [1]; 82,6 кПа – при амплитуде 10 мкм, расчет с помощью МГЭ; 96,0 кПа – при амплитуде 10 мкм, расчет с помощью COMSOL).

Моделирование с помощью МКЭ показывает, что акустические давления в основном и боковом лепестках диаграммы направленности являются противофазными (т. е. сжатие среды у передней части поверхности головки соответствует расширению у задней части). Это согласуется с результатами расчета фазы давления с помощью МГЭ, приведенными на рис. 4.

Рис. 4. Графики амплитуды акустического давления и его фазы, рассчитанные с помощью МГЭ

Как следует из приведенного графика, между основным и вторичным максимумами амплитуды акустического давления имеется фазовое смещение, равное π . С целью упрощения положений максимумов амплитуды график 1 фазы скомбинирован с графиком 2 (рис. 4) амплитуды в произвольном масштабе.

вывод

На основе анализа простой тестовой задачи показано, что МГЭ может быть использован в качестве эффективного инструмента для моделирования акустических полей, генерируемых в ультразвуковых хирургических процедурах, в частности ультразвуковой ангиопластике. МГЭ имеет ряд преимуществ по сравнению с МКЭ и может быть использован в качестве альтернативы традиционно используемому моделированию с помощью МКЭ либо дополняющего метода. Результаты моделирования с помощью МГЭ и МКЭ хорошо согласуются друг с другом как качественно, так и количественно.

ЛИТЕРАТУРА

 Wylie, M. P. A linear finite element acoustic fluid-structure model of ultrasonic angioplasty *in vivo* / M. P. Wylie, G. B. McGuinness, G. P. Gavin // International Journal for Numerical Methods in Biomedical Engineering. – 2010. – Vol. 26. – Р. 828–842.
 Тун, Ц. Эффективность восстановления про-

2. Тун, Ц. Эффективность восстановления проходимости пораженных атеросклерозом артерий ультразвуковыми волноводами различных модификаций *in vitro*: дис. ... канд. мед. наук / Ц. Тун. – Минск, 2006. – 110 с.

3. **Development** of piezoelectric ultrasonic thrombolysis device for blood clot emulsification / T. Li [et al.] // ISRN Materials Science. – 2012. – Article ID 106484.

4. **Horn-type** piezoelectric ultrasonic transducer: modelling and applications / T. Li [et al.] // Advances in Piezoelectric Transducers / Ed. by F. Ebrahimi. – N.Y.: InTech, 2011. – P. 3–26.

5. Juhl, P. M. The boundary element method for sound field calculations: PhD thesis / P. M. Juhl. – Copenhagen, 1993. – 195 p.

6. **Kirkup, S.** The boundary element method in acoustics / S. Kirkup. – S.I.: Integrated Sound Software, 1998. – 148 p.

7. **OpenBEM:** Open source Matlab codes for the Boundary Element Method [Электронный ресурс]. – Режим доступа: http://www.openbem.dk/.

8. **A boundary** integral approach for acoustic radiation of axisymmetric bodies with arbitrary boundary conditions valid for all wave numbers / W. Wang [et al.] // Journal of the Acoustical Society of America. – 1997. – Vol. 101. – P. 1468–1478.

9. Brick, H. A half-space BEM for the simulation of sound propagation above an impedance plane / H. Brick, M. Ochmann // Proc. of Acoustics'08. – Paris, 2008 [Электронный ресурс]. – Режим доступа: http:// webistem.com/acoustics2008/acoustics2008/cd1/data/ articles/001156.pdf.

10. **Тамм, Й. Е.** Основы теории электричества / И. Е. Тамм. – М.: Наука, 1989. – 504 с.

11. **Bayliss, A.** Boundary conditions for the numerical solution of elliptic equations in exterior regions / A. Bayliss [et al.] // SIAM Journal of Applied Mathematics. – 1982. – Vol. 42. – P. 430–451.

12. **COMSOL** Multiphysics. Version 3.5. Acoustics Module. User's Guide. – 2008.

Поступила 23.10.2013