УДК 666.97; 693.54

ТЕОРЕТИКО-ПРАКТИЧЕСКИЕ АСПЕКТЫ УХОДА ЗА ТВЕРДЕЮЩИМ ЦЕМЕНТНЫМ БЕТОНОМ

Асп. ЭГБАЛНИК С. М., докт. техн. наук, проф. БАТЯНОВСКИЙ Э. И.

Белорусский национальный технический университет

Физико-химические основы разрабатываемой технологии ухода за твердеющим бетоном базируются на физическом явлении массои влагопереноса, сопровождающем начальный период его твердения, а также на химическом взаимодействии наносимых на защищаемую поверхность веществ с продуктами процесса гидролиза-гидратации клинкерных минералов цемента, в результате которого образуются новые соединения большего объема, уплотняющие структуру камня на некоторую глубину. Как следствие – сужаются или кольматируются (закупориваются) каналы движения жидкости [1, 2], а в результате уменьшаются потери на испарение воды затворения, что обеспечивает условия, благоприятные для твердения цемента и соответственно для формирования более плотной и непроницаемой структуры цементного камня и бетона в целом.

Проникновение вещества таких реагентов в объем формирующейся структуры внешнего слоя цементного камня (бетона) связано как с диффузией ионов растворенных в воде веществ, так и с массопереносом раствора в пористой среде, которую представляет собой цементное тесто, трансформирующееся в цементный камень. Поэтому количественная оценка глубины и времени пропитки может быть дана с учетом фундаментальных представлений о процессе фильтрации жидкостей в пористых средах [3, 4], а на этом основании могут быть разработаны режимы ухода за бетоном: время нанесения защитных составов, расход вещества, периодичность нанесения и иные параметры, в зависимости от условий твердения и других факторов.

Теоретические аспекты ухода за бетоном. Исходя из фундаментальных закономерностей

фильтрационной гидравлики [3, 4] для пористых мелкозернистых твердофазных сред в [5] была получена формула для расчета глубины (l, \mathbf{m}) проникновения в сухие бетонные смеси жидкости (воды, растворов химических добавок) в виде

$$l = \frac{m_{\rm s} d_{\rm s}}{1 - m_{\rm s}} \sqrt{\frac{\beta P_{\rm H} \tau}{\rho_{\rm sc} \mu_{\rm n}}},\tag{1}$$

где $\mu_{\rm H}$ — динамическая вязкость жидкости, ${\rm H\cdot c/m^2}$; $\rho_{\rm ж}$ — плотность жидкости, ${\rm H/m^3}$; $P_{\rm H}$ — давление, при котором развивается процесс фильтрации, Па $({\rm H/m^2})$; τ — время, ${\rm c}$; $d_{\rm 3}$ — эффективный (усредненный) размер (диаметр) частиц цемента, м; $m_{\rm 3}$ — пористость среды, доли ед.; β — эмпирический коэффициент, ${\rm H/m^3}$.

Свойства фильтрата ($\mu_{\rm H}$, $\rho_{\rm w}$, $P_{\rm H}$, τ) и характеристики фильтрационной среды (d_3, m_3) , а также эмпирический коэффициент В, введенный Козени в расчетные формулы фильтрационной гидравлики, взаимоувязывает (1). Уравнение (1) может быть упрощено для рассматриваемого случая обработки поверхности бетона. В частности, приняв с достаточной для практических расчетов точностью [5, 6] величину расчетного эффективного диаметра зерна цемента $d_3 \sim 11,5 \cdot 10^{-6}$, м, и введя величину давления вакуума p_c , Па (H/м²), а также коэффициент пористости цементного теста $\varepsilon_{\text{п.т.}} = m_3/(1 - m_3)$, доли ед., и значение поправочного коэффициента β , H/m^3 , (1) в общем случае (при размерности в м) приобретает вид

$$l = 11, 5 \cdot 10^{-6} \beta \epsilon_{_{\text{II},\text{T}}} \sqrt{\frac{P_c \tau}{\rho_{_{\text{IK}}} \mu_{_{\text{II}}}}}.$$
 (2)

При дальнейшем преобразовании (1) для установленного в [7] минимально значимого

давления $p_c \sim 1200~\Pi a$, в случае обработки защитным составом (раствором) свежеотформованного бетона, вводим поправочный коэффициент β_{cB} , H/m^3 , а для ухода за бетоном после снятия опалубки (бортоснастки) - поправочный коэффициент β_{on} , $H/м^3$. Кроме того, с учетом экспериментально установленной авторами статьи продолжительности наиболее интенсивного периода впитывания вещества добавки т = = 86400 с (24 ч) зависимость (2) преобразуется к виду:

• для свежеотформованного бетона

$$l_{\rm cb} = 117\beta_{\rm cb}\varepsilon_{\rm ll,T}\sqrt{1/\rho_{\rm m}\mu_0}, \qquad (3)$$

• для варианта ухода за бетоном после снятия опалубки

$$l_{\rm on} = 117\beta_{\rm on} \varepsilon_{\rm \tiny IL,T} \sqrt{1/\rho_{\rm \tiny JK} \mu_0}. \tag{4}$$

Значения входящего в (3) и (4) эмпирического (поправочного) размерного коэффициента, который характеризует особенности фильтрационной среды (например, в [5] для случая насыщения цементосодержащих сухих бетонных смесей водой под давлением β ~ 11,4 H/м³, а в классической гидравлике по [3] для фильтрации воды через песчаные грунты величина в примерно составляет от 8,4 Н/м3 (Козени) до 350 Н/м³ (Зауэрбрей)), следовало уточнить для рассматриваемого частного варианта фильтрации. Его особенностью является, с одной стороны, весьма низкое давление, инициирующее процесс массопереноса, и практически непредсказуемое влияние химического взаимодействия вводимого вещества с продуктами гидролизагидратации цемента.

На основании накопленных экспериментальных данных по (3) и (4) при всех известных (кроме β) значениях входящих в эти зависимости факторов определено, что для обработки свежеотформованного бетона коэффициент $\beta_{cB} \sim 2,42 \cdot 10^{-2} \text{ H/м}^3$, а при уходе за бетоном после снятия опалубки $\beta_{\rm on} \sim 1,36 \cdot 10^{-2} \ {\rm H/m^3}.$ В результате после введения этих значений коэффициента В в (3) и (4) для случая ухода за свежеотформованным бетоном уплотняющими структуру веществами (растворами, характеризующимися известными рж и µд) или после снятия опалубки соответственно они упрощаются:

$$l_{cB} = 2.83 \epsilon_{II,T} \sqrt{1/\rho_{x}\mu_{0}};$$
 (5)

$$l_{\rm on} = 1,59\varepsilon_{\rm i,t.T} \sqrt{1/\rho_{\rm sc}\mu_0}$$
 (6)

Сопоставление значений коэффициента В, полученных авторами, с приведенным в работах по исследованиям в области напорной фильтрационной гидравлики или при водонасыщении сухих смесей под давлением, реально отражает ухудшение (усложнение) условий массопереноса в рассматриваемых случаях. Согласно полученным (с учетом сделанных допущений и упрощений) зависимостям (5) и (6), глубина проникновения вещества уплотняющей добавки в глубь объема цементного теста в бетоне связана прямой зависимостью с коэффициентом его пористости и обратной - с плотностью и динамической вязкостью раствора-фильтрата, что не противоречит физико-химической сути явления массопереноса.

Для практических расчетов по (5) и (6) целесообразно использовать значения коэффициента пористости $\epsilon_{\text{ц.т}}$ цементного теста в тяжелом бетоне на заполнителях из плотных горных пород, установленные в [8, с. 126]. В табл. 1 приведены данные экспериментальной проверки формул (5) и (6). В качестве защитного состава при выполнении этих экспериментов использовали 5%-й водный раствор $Al_2(SO_4)_3$, характеризующийся при температуре обрабатываемых образцов 20 °C (20 \pm 2 °C) общеизвестными справочными данными о плотности и динамической вязкости, а именно: $\rho_{\rm w} \sim 1051~{\rm H/m^3}$; $\mu_{\pi} \sim 0.001416 \text{ H} \cdot \text{c/m}^2$, что необходимо для теоретического расчета по (5) и (6).

На основании данных табл. 1 можно сделать вывод об адекватности зависимостей (5) и (6) и что они, в общем, дают возможность оценить вероятную глубину проникновения в цементный камень бетона вещества защитного состава и соответственно толщину формирующегося слоя цементного камня с уплотненной и менее проницаемой структурой. При этом подтверждается правомочность сделанного при выводе (5) и (6) допущения по расчетному времени: трасч ~ ~ 24 ч. Очевидно, что глубина проникновения вещества защитного состава, которая достигается за первые 24 ч после обработки, в дальнейшем увеличивается незначительно.

Расчетная и экспериментальная толщины измененного слоя цементного камня

Способ обработки поверхности,	Расчетная толщина слоя, мм	Экспериментальные данные о слое цементного камня (мм) через период времени, сут.						
расчетная формула		1	3	7	28			
По свежеотформованной, (5)	2,25	2,231	2,233	2,238	2,249			
		2,205	2,211	2,216	2,235			
		2,229	2,235	2,239	2,257			
		2,277	2,284	2,288	2,298			
		2,306	2,310	2,318	2,339			
		2,218	2,243	2,255	2,269			
		2,245*	2,252*	2,259*	2,275*			
После распалубки, (6)	1,26	1,290	1,305	1,313	1,315			
		1,282	1,306	1,310	1,310			
		1,247	1,255	1,265	1,269			
		1,169	1,195	1,200	1,203			
		1,283	1,289	1,306	1,306			
		1,280	1,290	1,293	1,293			
		1,258*	1,273*	1,281*	1,282*			
* Среднее значение по шести образцам.								

Физико-технические свойства защищаемого бетона. В процессе отработки технологии ухода за твердеющим бетоном исследовали варианты защиты от испарения влаги свежеотформованных поверхностей и открывающихся после снятия опалубки (бортоснастки) через 22-24 ч твердения. При этом оценивали влияние отдельных и совокупности факторов, в частности температуры и влажности воздуха, условий и режимов нанесения защитных составов разных видов, расхода состава на единицу площади, скорости ветра (движения воздуха) и др. Критериями оценки качества защиты явились потери бетоном (цементным камнем) влаги, изменение проницаемости, прочности и ряда других физико-механических свойств и характеристик тяжелого конструкционного бетона.

Испытания образцов мелкозернистого и тяжелого бетона с крупным заполнителем (составы – стандартизированные) на прочность (сжатие, растяжение при изгибе, осевое растяжение раскалыванием), упруго-деформативные и эксплуатационные свойства (водо-, соле-, морозостойкость, истираемость, защитная способность по отношению к стальной арматуре) определяли в варианте сравнения: при наличии защиты поверхности образцов по разрабатываемой технологии 5%-м раствором Al₂(SO₄)₃, либо без нее, либо в сопоставлении с иными

вариантами защитных составов или приемов ухода за твердеющим в воздушно-сухих условиях бетоном.

Одним из существенных преимуществ защиты поверхности твердеющего бетона уплотняющим его структуру веществом является установленная экспериментально способность обеспечивать достаточно высокое качество сцепления ранее уложенного (и затвердевшего) бетона с бетоном последующих слоев. Прочность сцепления старого (уложенного в форму за 24 ч до формования 2-го слоя) и свежего (т. е. 2-го) слоя тяжелого бетона с крупным заполнителем осуществляли, оценивая величину усилия и прочность на осевое растяжение образцов при испытаниях раскалыванием, с приложением сжимающей нагрузки в плоскости стыка слоев, в результате чего образец испытывает растягивающее усилие по сечению стыка.

Из данных табл. 2, где приведены средние значения характеристик бетона серий из шести образцов, следует, что наибольшим качеством сцепления старого и свежего слоев бетона характеризуются образцы, обработанные по разрабатываемой технологии 5%-м раствором Al₂(SO₄)₃. Далее по уровню прочности сцепления располагаются образцы при твердении 1-го слоя бетона под слоем воды («бассейновый» вариант ухода), которая была налита на по-

верхность образцов через 30 мин после формования 1-го слоя, т. е. в одно время с нанесением 2-го защитного слоя раствора $Al_2(SO_4)_3$ (№ 2), а также «Пенетрона» (№ 3) и пленкообразующего состава «Помороль-86». Следует отметить практическое равенство средней плотности образцов бетона (естественное состояние) всех серий, твердевших до 28 сут. в одинаковых условиях в помещении лаборатории, что свидетельствует о примерной однородности структуры бетона (одинаковом качестве формования) и обеспечивает принцип прочих равных условий при проведении эксперимента.

Сопоставление данных об уровне прочности в зоне контакта старого и свежего слоев бетона без ухода за ним (принято за 100 %) показывает, что она в разрабатываемом варианте защиты бетона возрастает в 2,6 раза (до 263 %, т. е. больше, чем при твердении старого бетона за этот период под слоем воды, - в 2,3 раза; 230 %). В остальных случаях качество сцепления слоев значительно хуже, особенно при обработке поверхности пленкообразующим со-«Помороль-86». Сформировавшаяся пленка из этого вещества предсказуемо снижает силы сцепления в зоне контакта старого и свежего слоев бетона.

Эффективность защитного состава из сульфата алюминия, по мнению авторов, связана со следующим. Во-первых, имеют место уплотнение и упрочнение поверхности 1-го слоя, т. е. старого бетона в соответствии с ранее установленным механизмом взаимодействия вещества $Al_2(SO_4)_3$ с продуктами гидролиза-гидратации цемента с образованием дополнительных

количеств гидрокристаллов гидросульфоалюмината кальция и иных соединений, характеризующихся большим объемом, в сравнении с исходным объемом вступающих в реакцию веществ. Во-вторых, за 24 ч воздушного твердения не все нанесенное на поверхность образцов вещество Al₂(SO₄)₃ химически связывается. Та его часть, которая оседает на поверхности старого бетона, затем растворяется водой затворения при нанесении на эту поверхность свежего бетона. Диффундируя (впитываясь) в контактный слой цементного камня свежего бетона, остаток вещества $Al_2(SO_4)_3$ вступает в реакции с продуктами гидролиза-гидратации цемента в этом слое, способствуя росту его плотности и прочности. В результате имеет место эффект сращивания контактирующих слоев с повышением сил их взаимодействия, что обеспечивает рост прочности в зоне их контакта в сравнении с другими вариантами защиты бетона.

Одновременно отметим, что, несмотря на выявленный рост сил сцепления в зоне контакта «старый – свежий» бетон, при его защите уровень прочности стыка ($f_{ctm} \sim 1,13$ МПа) существенно ниже прочности на осевое растяжение собственно бетона образцов-аналогов $(f_{ctm} \sim 3.8 \text{ M}\Pi a)$, установленной в данном эксперименте, т. е. составляет ~30 % ее величины.

В табл. 3 приведены результаты сравнительной оценки физико-технических характеристик и свойств тяжелого бетона, твердевшего в воздушно-сухих условиях без мер защиты и с двухразовым нанесением 5%-го раствора $Al_2(SO_4)_3$.

Таблица 2 Средние значения характеристик бетона серий из шести образцов

Номер серии и вариант защитного	Масса образцов и средняя плотность бетона		Разрушающая	Прочность бетона на растяжение в зоне контакта слоев	
состава (уход за стыком слоев бетона)	т, г	ρ°, кг/м³	нагрузка, Н	МПа	%
1. Без мер защиты	862	2390	2978	0,43	100
2. Нанесение 5%-го раствора Al ₂ (SO ₄) ₃ в два слоя	885	2405	7884	1,13	263
3. Нанесение рабочего раствора состава «Пенетрон» в два слоя	875	2419	5081	0,73	170
4. Нанесение рабочего раствора пленко- образующего состава «Помороль-86» – один слой		2390	3677	0,53	123
5. Твердение 24 ч под слоем воды	885	2405	6931	0,99	230

Физико-технические свойства бетона

Показатель, вид бетона	Размерность	Образец без защиты	Обработка $Al_2(SO_4)_3$	Относительная величина показателя, %
Прочность на сжатие	МПа	28	40,5	145
То же, мелкозернистый	МПа	32	48,5	152
Прочность на осевое растяжение, раскалыванием	МПа	3,5	5,1	134
То же, мелкозернистый	МПа	3,9	5,3	136
Прочность на растяжение при изгибе, мелкозернистый	МПа	4,8	6,9	136
Модуль упругости, мелкозернистый	ГПа	22,0	28,0	127
Усадка при стабилизации к 42 сут., мелкозернистый	МКМ	155	111	72
Количество химически связанной воды цементом к 28 сут., цементный камень	%	9,7	13,2	136
Степень гидратации цемента	Доли ед.	43,0	58,1	135
Водопоглощение (по массе)	%	3,8	3,2	84
Морозостойкость	Марка	F200	F300-350	150
Солестойкость в растворе NaCl по прочности к 20 циклам	МПа	31,4	38,8	124
V	10 цикл.	Неустойчивое	Пассивное	_
Коррозионное состояние арматуры через 10 и 20 циклов	20 цикл.	Коррозия	Неустойчивое	_
Истираемость бетона	Γ/CM ²	1,3	0,8	61

Из анализа данных табл. З видно, что меры защиты или ухода за бетоном с помощью уплотняющей его структуру добавки $Al_2(SO_4)_3$ обеспечивают рост степени гидратации цемента и непроницаемости цементного камня (бетона) за счет роста его плотности. Это отражается на уменьшении водопоглощения как фактора снижения пористости бетона. На этом основании возрастают его прочностные характеристики и модуль упругости, а также морозои солестойкость, защитная способность по отношению к стальной арматуре; одновременно снижаются усадка и истираемость бетона.

С учетом того, что прочность сцепления слоев старого и свежего бетона при уходе за ним по разрабатываемой технологии оказалась больше, чем при твердении старого бетона в наиболее благоприятных условиях - под слоем воды, а также накопленных данных о том, что прочностные характеристики бетона, твердевшего в благоприятных нормально-влажностных условиях, не более чем на 5-7 % превышают аналогичные для разрабатываемой технологии защиты, но при твердении в воздушно-сухих условиях, она имеет большое практическое значение для строительного производства как в варианте изготовления сборных бетонных и железобетонных изделий, так и для монолитного строительства.

выводы

- 1. Разработаны теоретические основы проникновения вещества уплотняющей структуру бетона добавки Al₂(SO₄)₃ вглубь при нанесении раствора на защищаемую поверхность, базирующиеся на фундаментальных закономерностях фильтрационной гидравлики и физико-химических явлениях, развивающихся в процессе твердения цемента и проявляющихся в возникновении разрежения в объеме цементного камня (бетона). Благодаря этому бетон сорбирует наносимый на его поверхность раствор защитного состава. Предложены эмпирические математические зависимости (5) и (6) для ведения (при необходимости) инженерных расчетов.
- 2. Исследована кинетика твердения и установлены физико-технические свойства тяжелого конструкционного бетона при твердении в воздушно-сухих условиях при температуре в диапазоне 20–50 °C и совместном воздействии скорости ветра (0–7 м/с), показана эффективность защиты поверхности свежеотформованного бетона и после его распалубки двухразовым нанесением (расход \sim 400 г/м²) 5%-го раствора $Al_2(SO_4)_3$. Результаты выполненных экспериментальных исследований подтвердили эффективность использования разрабатываемой технологии с целью обеспечения требуе-

мых физико-механических свойств и характеристик конструкционного тяжелого бетона.

ЛИТЕРАТУРА

- 1. Тейлор, К. Химия цемента: пер. с англ. / К. Тейлор. – М.: Мир, 1986. – С. 294–345.
- 2. Цементный бетон в дорожном строительстве / С. В. Шестоперов [и др.]. – М.: Дориздат, 1950. – 132 с.
- 3. Лейбензон, Л. С. Движение природных жидкостей и газов в пористой среде / Л. С. Лейбензон. - М.; Л.: Гостехиздат, 1947. - С. 11-73.
- 4. Коллинз, Р. Течение жидкостей через пористые материалы / Р. Коллинз. – М.: Мир, 1964. – С. 68–104.

- 5. Батяновский, Э. И. Особо плотный бетон сухого формования / Э. И. Батяновский. - Минск: Стринко, 2002. -C. 108-112.
- 6. Блещик, Н. П. Структурно-механические свойства и реология бетонной смеси и прессвакуумбетона / Н. П. Блещик. – Минск: Наука и техника, 1977. – 230 с.
- 7. Скрамтаев, Б. Г. Достижения технологии бетона в СССР и дальнейшие задачи / Б. Г. Скрамтаев // Труды IV Всесоюзн. конф. по бетону и железобетонным конструкциям. - Ч. III: Усовершенствование технологии бетона. – М.; Л.: Гос. из-во. строит. лит., 1949. – С. 3–25.
- 8. Ахвердов, И. Н. Основы физики бетона / И. Н. Ахвердов. - М.: Стройиздат, 1981. - 464 с.

Поступила 28.02.2013

УДК 711.4; 725.8

ПЕРСПЕКТИВЫ СОВЕРШЕНСТВОВАНИЯ АРХИТЕКТУРНО-ПЛАНИРОВОЧНОЙ ОРГАНИЗАЦИИ ПОСЕЛЕНИЙ НА ГОРНОМ ЛАНДШАФТЕ ТАДЖИКИСТАНА

Канд. архит. АКБАРОВ А. А.

Таджикский технический университет

Устойчивое развитие горных регионов с начала XXI в. стало важнейшей проблемой мировой цивилизации. Одной из ключевых задач исследования этой проблемы ныне становятся вопросы архитектурно-планировочного формирования горных поселений. Это обусловлено значением сельских поселений в территориальной организации горных районов, экономической ролью как частью территориальной структуры хозяйства.

Развитие горных районов связано с современным развитием экономики горных территорий. Парадокс заключается в том, что горные районы, обладая богатыми и разнообразными ресурсами, в большинстве своем остаются слабо развитыми в экономическом отношении. Одна из проблем развития горных районов заключается в том, чтобы используя оправдавшие себя на практике традиционные методы ведения хозяйства, параллельно оптимально находить и использовать научно обоснованные, новые технологии и методы развития животноводства, горного и предгорного земледелия, лесоводства, пчеловодства и т. п. с целью

повышения продуктивности и рентабельности [1]. Одновременно необходимо определить основы совершенствования системы сельского расселения по вертикальным поясам горных районов.

Другая проблема связана с необходимостью всемерного развития перерабатывающей промышленности непосредственно вблизи источников сельскохозяйственного сырья (животноводческого, овощеводческого, садоводческого и др.) - в горных населенных пунктах - и создания современной производственно-селитебной системы. Следует подчеркнуть, что решение этой проблемы является одной из основополагающих задач в экономическом развитии горных районов.

В горных регионах мира получает развитие этно-, агро- и экотуризм. Современные виды туристических услуг предполагают обязательное сохранение традиционного горного сельского хозяйства. Все это способствует сохранению горной среды и традиционных ценностей жителей гор, что обеспечивает развитие горных сел. Основными элементами, особо привлека-