- а) графики, показывающие изменение объема материала, необходимого на создание конструкции, зависимости от номера итерации (рис. 3);
- б) графики изменения площадей поперечного сечения элементов в зависимости от номера итерации (рис. 4).
- 3. Полученные в результате оптимизации рамы при 4-х группах переменных проектирования (рис. 2г) значения площадей поперечных сечений для первой и третьей групп соответствуют глобальному минимуму, о чем свидетельствует схема поиска оптимального решения, приведенная на рис. 5.

ЛИТЕРАТУРА

1. Трепачко В. М. Оптимальное проектирование неразрезных балок с нелинейными физическими характери-

- стиками материалов // Актуальные проблемы расчета зданий, конструкций и их частей: Теория и практика: Материалы междунар. науч.-техн. конф. / Под ред. А. А. Борисевича, С. В. Босакова, Т. М. Пецольда, Е. М. Сидоровича. Мн.: УП «Технопринт», 2002. С. 123–130.
- 2. **Трепачко В. М.** Оптимальное проектирование рам с нелинейными физическими характеристиками материалов // Проблемы надежности машин и конструкций: Тез. докл. междунар. конф. / Под ред. В. П. Чиркова и др. Мн: УП «Технопринт», 2002. С. 97–98.
- 3. **Ржаницын А. Р.** Строительная механика. М.: Высш. шк., 1991. 439 с.
- 4. Борисевич А. А., Трепачко В. М. Оптимизация шарнирно-стержневых систем с нелинейными физическими характеристиками материалов // Перспективы развития новых технологий в строительстве и подготовке инженерных кадров Республики Беларусь: Материалы VI междунар. науч.-метод. семинара / Под ред. Н. П. Блещика, А. А. Борисевича, Т. М. Пецольда. Мн.: УП «Технопринт», 2000. С. 354–360.

УДК 625.78

ВЛИЯНИЕ ПРОЦЕССА СТАРЕНИЯ НА ФИЗИКО-МЕХАНИЧЕСКИЕ ПОКАЗАТЕЛИ АСФАЛЬТОБЕТОНА

Канд. техн. наук, доц. ИВАНЬСКИ М., докт. техн. наук, проф. ЛЕОНОВИЧ И. И.

Политехнический институт, г. Кельце (Польша), Белорусский национальный технический университет

Развитие автомобильного транспорта выдвигает в число первостепенных проблему качества дорог. От их технического и транспортноэксплуатационного состояния во многом зависят эффективность капитальных вложений, показатели использования подвижного состава, безопасность дорожного движения, уровень транспортного обслуживания отраслей экономики и людей, проживающих в различных регионах.

Состояние дорог, в свою очередь, зависит от качества используемых материалов. В Беларуси [1] и Польше [2] наибольшее распространение имеют асфальтобетоны, свойства которых играют важную роль как в обеспечении механической прочности дорожной одежды, так и их транспортно-эксплуатационных показателей. Они зависят от качества битума, особенностей минеральных компонентов и технологии

приготовления асфальтобетонных смесей. На практике в качестве вяжущих применяются различные дорожные модифицированные и немодифицированные битумы.

В качестве минерального заполнителя используются щебень, гравий, песок и различные порошки. Его состав может быть как прерывной, так и непрерывной гранулометрии. Важнейшую роль в составе минеральной части асфальтобетона играет крупный щебень, который получают путем дробления каменных материалов различных горных пород: гранитов, базальтов, доломитов, кварцитов и др.

Качество автомобильных дорог оценивается рядом критериев: прочностью и сдвигоустойчивостью, морозостойкостью и т. п. Одним из таких критериев является коэффициент сцепления колес автомобиля с покрытием, и его первоосно-

ва – шероховатость. Для ее обеспечения применяются крупнозернистые и щебнемастичные асфальтобетоны, периодически проводятся поверхностные обработки, обновляются слои износа с использованием различных технологий. Однако, как показывают исследования, применяемые технологии не всегда обеспечивают в процессе эксплуатации стандартные требования прочности и шероховатости. Проблемы обеспечения прочности и шероховатости покрытия в значительной степени связаны с качеством используемого щебня. В Беларуси применяется преимущественно гранитный щебень, в Польше – базальтовый, доломитовый и кварцитовый.

В настоящей статье дается сравнительный анализ влияния процесса старения на физикомеханические показатели асфальтобетона при использовании различных составов. Под стареподразумевается изменение механических показателей во времени. Учитываются также свойства используемого щебня. Базальтовый и доломитовый щебень в процессе эксплуатации асфальтобетонного покрытия стирается относительно быстро, что приводит к снижению шероховатости. Кварцитовый - обладает более высокой прочностью и сопротивляемостью на стирание. Однако кварцитовый щебень содержит около 95 % SiO₂ и поэтому с трудом обволакивается битумом. С целью улучшения процесса обволакивания применяют добавку поверхностно-активных веществ (ПАВ), которые влияют на физико-механические свойства асфальтобетона. На интенсивность процесса обволакивания щебня битумом особенно влияет текстура поверхности зерен [3]. Кварцитовый щебень имеет более развитую текстуру поверхности зерен, в связи с чем процесс обволакивания зерен щебня битумом ускоряется.

В производстве асфальтобетона и его эксплуатации в дорожном покрытии имеет место ряд факторов, влияющих на свойства как битума, так и асфальтобетона в целом. Рассматривая процесс изменения свойств битума во времени, можно выделить два этапа:

• первый – технологический, который происходит стремительно и связан с влиянием высокой температуры во время хранения битума, приготовления асфальтобетонной смеси, ее транспортировки и укладки. При этом происхо-

дит испарение легких углеводородов из битума. В программе SHRP (Strategic Highway Research Program), разработанной в США, этот этап получил название «кратковременного старения» (STOA — Short-Term of Aging);

• второй, связанный с влиянием климатических факторов во время эксплуатации асфальтобетонного покрытия, получил название «долговременного старения» (LTOA – Long-Term of Aging).

Процесс старения асфальтобетона необратим и приводит к отрицательным последствиям: повышается жесткость и снижается упругость асфальтобетона. Это ведет к разрушению битумного слоя. Битум теряет упруго-пластичные свойства, вследствие чего наступает понижение его адгезии к поверхности щебня. Процесс этот приводит к понижению водо- и морозостойкости асфальтобетона. Особенно он ощутим для асфальтобетона, приготовленного из щебня, содержащего большое количество SiO₂.

Интенсивность процесса старения асфальтобетона зависит также от различных технологических факторов, таких как количество крупного щебня, битума, вида каменных материалов, а также химических добавок. Асфальтобетон с прерывистым минеральным составом содержит большое количество щебня при малом содержании битума. В его производстве используется кварцевый песчаник. Поэтому, когда проектируются асфальтобетоны такого типа, следует учитывать влияние процесса старения на его свойства. Процесс старения приводит к упрочнению структуры асфальтобетона при положительных температурах, а это, свою очередь, имеет особое значение для работоспособности при отрицательных температурах, которые вызывают понижение его водо- и морозостойкости.

Настоящие исследования были проведены на асфальтобетоне с прерывистым зерновым составом согласно польским нормам PN-S-96025—2000. Граничные значения зернового состава представлены на рис 1.

Минеральную смесь готовили на базальтовом, доломитовом и кварцитовом щебне. Составы подобраны таким образом, чтобы полученные асфальтобетоны характеризовались одинаковой пористостью. Это позволило сравнивать их свойства. Гранулометрический состав асфальтобетона представлен в табл. 1.

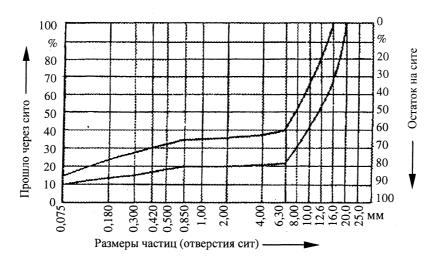


Рис. 1. Кривые зернового состава асфальтобетона

Таблииа 1

Гранулометрический состав асфальтобетона

Вид минерального материала		Размеры частиц, мм								•			
	16	12,5	10	8	6,3	4	2	0,85	0,42	0,30	0,18	0,15	0,075
Базальт	86,5	53,2	46,9	40,5	37,2	30,9	27,4	19,9	16,4	15,2	14,0	13,7	12,1
Доломит	90,6	76,0	55,5	43,2	39,9	35,4	29,1	20,7	17,0	15,9	14,6	14,2	12,4
Кварцит	92,8	72,8	50,1	43,6	41,0	36,7	30,3	22,0	18,3	17,2	15,7	15,2	13,3

К асфальтобетону, приготовленному на кварцевом песчаниковом щебне, вводили добавку ПАВ в количестве 0,3 % от объема вяжущего [4]. В качестве вяжущего использовали битум D50 Плоцкого нефтеперерабатывающего завода, в качестве добавки ПАВ – Тегатіп 14, который по своим свойствам аналогичен добавке Dinoram (Франция).

Во время исследований принимались только такие образцы, пористость которых находилась в пределах V-2s; V+2s, где V – средняя пористость; s – стандартное отклонение. Это позволило получить сопоставимые результаты исследований, достоверность которых подтверждена статистическим анализом.

На следующем этапе определяли стандартные свойства асфальтобетона. Результаты представлены в табл. 2.

Таблица 2 Основные свойства асфальтобетона

	Вид минеральной смеси (щебня)				
Свойства асфальтобетона	Базальт	Доло- мит	Квар- цит		
Пористость, %	3,4	3,0	2,8		
Степень заполнения битумом пустот, %	79,7	80,8	81,2		
Стабильность по Маршаллу, кН	11,2	11,8	13,8		
Водонасыщение, %	0,32	0,39	0,68		
Деформативность по Маршаллу, мм	3,5	3,6	3,5		
Жесткость по Маршаллу, кН/мм	3,2	3,3	3,9		
Модуль жесткости при 40 °C, МПа	21,6	20,9	25,4		
Прочность на растяжение при 25 °C, МПа	1,45	1,50	1,60		
Количество вяжущего, %	5,0	5,0	5,2		

Исследования механических свойств показывают, что наилучшие характеристики имеет асфальтобетон, приготовленный с кварцитовым

щебнем, более низкие — с базальтом и доломитом. Стабильность по Маршаллу асфальтобетона с кварцитовым щебнем достигала 13,2 кН и была выше на 20 % по сравнению с остальными. Модуль жесткости и прочность на растяжение, определяющие поведение асфальтобетона при положительных температурах, также были лучшими для асфальтобетона с кварцитовым щебнем. Следует отметить, что водонасыщение последнего оказалось в два раза выше, чем для асфальтобетонов с доломитом или базальтом, однако значительно меньше стандартного.

В дальнейших исследованиях определялось влияние процесса старения на свойства асфальтобетона при положительных температурах по методике, разработанной при реализации программы SHRP в США [5]. Согласно этой методике исследования выполняли при:

- кратковременном старении (STOA) смесь асфальтобетона выдерживалась в течение шести часов при температуре 135 °C в термическом шкафу с циркуляцией воздуха, после чего из нее готовили образцы для исследований;
- долговременном старении (LTOA) асфальтобетонные образцы выдерживались в термическом шкафу с циркуляцией воздуха при температуре 85 °C в течение трех дней.

Исследования проводились также на асфальтобетоне, который не подвергается влиянию процесса старения (NS).

В качестве критерия влияния процесса старения на свойства асфальтобетона применяли показатель WK, который определяли по формулам:

$$WK = \frac{\sigma_{STOA}}{\sigma_{NS}} \cdot 100 \%; WK = \frac{\sigma_{LTOA}}{\sigma_{NS}} \cdot 100 \%; (1)$$

$$WK = \frac{\sigma_{STOA}}{\sigma_{LTOA}} \cdot 100 \%, \tag{2}$$

где σ_{STOA} , σ_{LTOA} — модули жесткости при краткои долговременном температурных воздействиях (старении) на смесь образца асфальтобетона; σ_{NS} — модуль жесткости асфальтобетона, не подвергавшегося температурному воздействию.

Изучали влияние процесса старения на модуль жесткости и прочность на растяжение. Эти

показатели отвечают за работоспособность асфальтобетона при положительных температурах. Результаты влияния процесса старения на модуль жесткости асфальтобетона представлены в табл. 3.

Анализ результатов исследований показывает, что во время старения наступает упрочнение структуры асфальтобетона. Модуль жесткости всех асфальтобетонов, независимо от вида минерального материала, повышался в пределах от 133 до 144 %. Наиболее упрочнялся асфальтобетон с доломитом, а затем — с кварцитовым щебнем и базальтом. В процессе долговременного старения упрочнение структуры асфальтобетона повышалось до 114 %. В наибольшей степени менялся модуль жесткости асфальтобетона с кварцитовым щебнем. Во время кратковременного и долговременного старения модуль жесткости асфальтобетона с кварцитовым щебнем повышался на 60 %.

Таблица 3
Влияние процесса старения на модуль жесткости асфальтобетона

Вид мине- рального материала		ль жест МПа	кости,	Показатель изменения модуля жесткости WK, %			
	NS	STOA	LTOA	STOA / NS	LTOA / NS	STOA / LTOA	
Базальт	21,6	28,7	31,5	133	146	110	
Доломит	20,9	30,1	31,6	144	151	105	
Кварцит	25,4	35,5	40,6	140	160	114	

Влияние процесса старения на прочность асфальтобетона при растяжении определяется по формулам, аналогичным (1), (2). Результаты исследований приведены в табл. 4.

Таблица 4
Влияние процесса старения на прочность асфальтобетона при растяжении

Вид ми- нерально- го мате- риала		ость на р ри 25 °C	растяже- С, МПа	Показатель прочности на растяжение WK_r , %			
	NS	STOA	LTOA	STOA/ NS	LTOA/ NS	STOA/ LTOA	
Базальт	1,45	1,96	2,13	135	147	109	
Доломит	1,50	2,13	2,40	142	160	113	
Кварцит	1,60	2,32	2,61	145	163	113	

Во время кратковременного старения прочность на растяжение асфальтобетона повышалась в пределах от 135 до 145 %. Долговременное старение вызывало медленное повышение прочности, которая увеличивалась на 113 %. Исследования показали, что больше всего возрастала прочность на растяжение асфальтобетона с кварцитовым щебнем, а затем — с доломитом и базальтом. Прочность на растяжение асфальтобетона с кварцитовым щебнем во время процесса старения повышалась на 63 %.

Процесс старения асфальтобетона вызывал повышение модулей жесткости и прочности на растяжение, которые характеризуют его работоспособность при положительных температурах. Таким образом упрочнение структуры асфальтобетона может иметь особое влияние на его устойчивость к воздействию воды, а также воды и отрицательных температур.

В дальнейшем была сформулирована программа исследований, согласно которой определялась устойчивость асфальтобетона к:

• влиянию воды – согласно ААЅНТО Т165 [6].

В качестве критерия устойчивости к влиянию воды на свойства асфальтобетона применяли показатель WR, который определяли по формуле

$$WR = \frac{\sigma_{50}}{\sigma_{25}} \cdot 100 \%,$$
 (3)

где σ_{25} , σ_{50} – прочность на сжатие водонасыщенных образцов, выдержанных при температуре 25 и 50 °C, МПа.

В случае, когда показатель *WR* выше 70 %, считается, что асфальтобетон устойчив к воздействию воды;

• влиянию воды и отрицательных температур – согласно AASHTO T283 с дополнениями методики SUPERPAVE, разработанной по исследованиям Lottman, Tunicliffn Root [4].

Показатель прочности на растяжение водонасыщенных асфальтобетонных образцов определяется по формуле

$$WRZ_{w} = \frac{R_{w}}{R_{I}},\tag{4}$$

где R_w – прочность на растяжение образцов, выдержанных при соответствующей влажности, МПа; R_l – прочность на растяжение образцов, выдержанных и испытанных в лабораторных условиях, МПа.

В качестве критерия устойчивости к влиянию воды и отрицательных температур на свойства асфальтобетона принят показатель $WRZ_{w, t}$, который рассчитывается по формуле

$$WRZ_{w,t} = \frac{R_{w,t}}{R_t} \cdot 100 \%,$$
 (5)

где $R_{w,t}$ – прочность на растяжение образцов, выдержанных при соответствующей влажности w и температуре t; R_l – прочность на растяжение образцов, выдержанных в лабораторных условиях.

В случае, когда показатель $WRZ_{w,t}$ выше 70 %, асфальтобетон считается устойчивым к влиянию воды, а также воды и отрицательных температур;

• возникновению трещин – согласно PANK 4302 [2].

Принимается, что если прочность на растяжение при температуре –2 °C меньше 4,8 МПа, в асфальтобетонном слое зимой не возникают трещины.

Результаты исследований на водо- и морозостойкость асфальтобетона с учетом процесса старения представлены в табл. 5. В исследованиях рассмотрено только влияние кратковременного старения в связи с тем, что оно оказывает более значительное влияние.

Анализ исследований показывает, что все асфальтобетоны относительно устойчивы к влиянию воды, а также воды и отрицательных температур в процессе старения. Применение добавки ПАВ обеспечивало работоспособность асфальтобетона при отрицательных температурах и воздействии воды. Наилучшие показатели были характерны для асфальтобетона с доломитовым,

Таблица 5 Водо- и морозостойкость асфальтобетона

Chaireann aghair magar	Вид минеральной смеси							
Свойства асфальтобет	Ба- зальт	Доло- мит	Квар- цит					
Показатель прочности на	NS	93,1	96,4	цит 91,6 82,7 0,90 4,0 4,8				
сжатие WR, %, AASHTO	STOA	87,5	92,5	82,7				
T165	STOA/NS	0,94	0,96	0,90				
Прочность на растяжение	NS	3,7	3,4	4,0				
при –2 °C, МПа, РАNК	STOA	4,3	3,7	4,8				
4302	STOA/NS	1,16	1,09	1,20				
Показатель прочности на	NS	85,3	86,8	83,4				
растяжение WRZ_w – вода,	STOA	76,8	81,6	71,7				
%, AASHTO T283	STOA/NS	0,90	0,94	0,86				
Показатель прочности на	NS	76,0	78,9	цит 91,6 82,7 0,90 4,0 4,8 1,20 83,4 71,7				
растяжение $WRZ_{w, t}$, % вода и отрицательные тем-	STOA	67,6	73,4	61,7				
пературы, ААЅНТО Т283	STOA/NS	0,89	0,92	0,84				

затем с базальтовым и кварцитовым щебнем. В процессе старения наступало снижение рассматриваемых характеристик асфальтобетона. Прочность на растяжение асфальтобетона с кварцитовым щебнем при -2 °C достигала граничного значения – 4,8 МПа. В таком асфальтобетонном слое зимой возникают трещины. Также показатель прочности на растяжение $WRZ_{w,t}$ имел значения, меньшие граничного. Вследствие этого асфальтобетон с кварцитовым щебнем не обладает устойчивостью к влиянию воды и отрицательных температур. Как показывают результаты исследований, асфальтобетон с базальтом также не устойчив к влиянию воды и отрицательных температур.

выводы

1. Применение в асфальтобетоне кварцитового щебня повышает его механические характеристики при положительных температурах больше, чем использование базальтовых или доломитовых щебней.

- 2. Введение определенного количества ПАВ обеспечивает водо- и морозостойкость асфальто- бетона с кварцитовым щебнем. Упрочнение структуры асфальтобетона в процессе старения приводит к снижению этой устойчивости. Отсюда следует определять количество добавляемых ПАВ с учетом процесса старения асфальтобетона.
- 3. В процессе старения, независимо от вида применяемого минерального материала, наступает упрочнение структуры асфальтобетона, повышаются модуль жесткости и прочность на растяжение.
- 4. В процессе кратковременного старения происходит более интенсивное изменение свойств асфальтобетона, чем в процессе долговременного старения, в период которого наступает повышение исследованных характеристик асфальтобетона на 40 %. Наибольшее повышение таких характеристик наступает при использовании доломитового и кварцитового щебня.
- 5. При проектировании асфальтобетона следует обращать внимание на определение такого количества вводимых битума и ПАВ, которое обеспечивало бы водо- и морозостойкость асфальтобетона с учетом процесса его старения.

ЛИТЕРАТУРА

- 1. Автомобильные дороги Беларуси / Под общ. ред. А. В. Минина. – Мн.: Беларуская Энцыклапедыя, 2002. –
- 2. **Леонович И. И.** Автомобильные дороги Польши // Вестник БНТУ. 2002. № 4. С.14–17.
- 3. **Королев И. В.** Пути экономии битума в дорожном строительстве. М.: Транспорт, 1986. 150 с.
- 4. **Iwanski M.** Influence of type of aggregate on bituminous mixtures durability. VI International Conference. Durable and Safe Road Pavements Poland. Kielce, 9–10 May 2000. P. 77–84.
- 5. Bell A. C., AB-Wahaby Y., Cristime M. E., Sosnovske D. Selection of Laboratory Aging Procedures for Asphalt-Aggregate Mixtures. Strategic Highway Research Program, Report Nr SHRP-A-383. National Research Council, Washington D. C.
- 6. **Judycki J., Jaskula P.** Badania odpomosci betonu asfaltowego na oddziaływanie wody i mrozu. Drogownictwo 12. Warszawa, 1997. S. 374–378.