

Рис. 3. Моделирование работы компаратора

При необходимости повысить быстродействие данного АЦП можно заменой компаратора, однако для рассматриваемого приложения полученные параметры являются достаточными.

вывод

Для построения адресно-аналоговых извещателей не обязательно применять внешние схемы аналогово-цифровых преобразователей, а можно использовать имеющиеся свободные ресурсы микроконтроллера. Особенно это актуально, когда устройство работает с медленно изменяющимися сигналами и критично к стоимости составляющих его компонентов.

ЛИТЕРАТУРА

- 1. **Doug Cox.** Analog to Digital Conversion Using a PIC16C54. DS00513D-page 6, Microchip Technology Inc., 1997.
- 2. 8-bit Microcontroller with 8K Bytes Flash. AT89S8252. Datasheet. Atmel Corporation, 2000.

УДК 629.113.012.8.001.57

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ УСТОЙЧИВОСТИ СИСТЕМ ПОДРЕССОРИВАНИЯ

Канд. техн. наук, доц. РЕЙЗИНА Г. Н.

Белорусский национальный технический университет

Современные математические модели колесных машин описывают физические процессы, происходящие в деталях и узлах трансмиссии подвески и др. При выводе дифференциальных уравнений используют различные расчетные схе-

мы одной и той же системы транспортной машины. Так, исследуя динамическую нагруженность в трансмиссии автомобиля, все детали и массу автомобиля приводят к крутильной схеме, а, исследуя вертикальные и продольно-угловые колеба-

ния, расчетную схему представляют системой вертикально колеблющихся масс [1].

Однако в настоящее время имеются работы, в которых показаны связанность кругильных колебаний в трансмиссии с вертикальными, угловыми и продольными колебаниями подрессоренных и неподрессоренных масс. Математическая модель, отражая физику исследуемого процесса, является достаточно громоздкой и имеет ряд допущений.

Автор попыталась создать математическую модель системы колесо-подвеска-масса, учитывая крутильные колебания вместе с вертикальными, определить ее устойчивость [2, 3].

Опыт эксплуатации свидетельствует, что между этими двумя видами колебаний существует весьма сильная связь в виде нарастающих колебаний. Возможной причиной, объясняющей наблюдаемый эффект, является возникновение параметрических колебаний от периодического изменения другого параметра.

Структурная схема колесо-подвеска-масса может быть представлена в виде упрощенной схемы (рис. 1). При этом анализируется двумерный случайный процесс вертикальной реакции на колесе и крутящего момента на полуоси. Характеристикой данной системы является устойчивость. Под устойчивостью системы подрессоривания понимается декремент затухания колебаний системы под воздействием крутильных и возмущающих факторов. В этом случае мерой устойчивости удобно считать безразмерную величину

$$\overline{n} = \frac{n}{p} = \frac{1}{2\pi} \ln \frac{a_n}{a_{n+1}},$$

представляющую собой логарифмический декремент затухания, отнесенный к 2π .

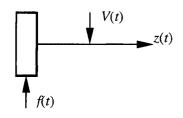


Рис. 1. Упрощенная схема системы подвеска— трансмиссия с одним входом f(t) при наличии высокочастотной составляющей V(t) и выходом z(t)

Теория дифференциальных уравнений с периодическими коэффициентами довольно сложна,

и до конкретных численных результатов доведен лишь один часто встречающийся в приложениях случай дифференциального уравнения второго порядка с одним коэффициентом, меняющимся по гармоническому закону, — так называемое уравнение Матье.

В данном случае задача (связь линейных и крутильных колебаний) свелась к уравнению Матье с коэффициентом демпфирования

$$\ddot{z} + k\dot{z} + \omega^2(1 + h\cos\nu\tau)z = f(t), \qquad (1)$$

где k — коэффициент демпфирования; ω — частота собственных колебаний системы; h — амплитуда крутильных колебаний; ν — собственная частота крутильных колебаний.

Частное решение однородного уравнения:

$$\begin{cases}
z_1(t) = e^{(\lambda - \frac{k}{2})t} \cos(\frac{\nu}{2}t + \alpha); \\
z_2(t) = e^{-(\lambda + \frac{k}{2})t} \sin(\frac{\nu}{2}t + \alpha).
\end{cases}$$
(2)

Общее решение

$$z(t) = c_1 z_1(t) + c_2 z_2(t) + \tilde{z}(t), \qquad (3)$$

где

$$\widetilde{z}(t) = -z_1 \int_0^t \frac{z_2}{w} f(t)dt + z_2 \int_0^t \frac{z_1}{w} f(t)dt,$$

 $w(t) = \frac{v}{2} - \lambda \sin(vt + 2\alpha)$ — определитель Вронского для фундаментальной системы решений $z_1, z_2,$ где

$$\begin{cases} \lambda = \sqrt{\frac{h^2 \omega^4}{4v^2} - (\omega - \frac{v}{2})^2}; \\ \alpha = \arctan \left(\frac{h\omega^2}{2v} + (\omega - \frac{v}{2})}{\lambda}\right). \end{cases}$$

Зона неустойчивости для (1)

$$1 - \sqrt{\frac{h^2 - 4k^2}{4 - v^2}} < \left(\frac{2\omega}{v}\right)^2 < 1 + \sqrt{\frac{h^2 - 4k^2}{4 - v^2}}, \quad h > 4\frac{k}{v}. \quad (4)$$

Величина ω называется частотой собственных колебаний рассматриваемой системы, v — частотой параметрического возбуждения, а безразмерная величина h характеризует мощность параметрического возбуждения. Если при фиксированных значениях k и ω менять мощность h и частоту возбуждения v, то система становится колебательно неустойчивой (или устойчивой), в ней наблюдаются нарастающие по амплитуде колебания с частотой, близкой к v. Графики для определения границ областей неустойчивости в параметрах

$$h$$
, ω/ν и $k = \frac{n}{p}$ приведены на рис. 2. Зон неус-

тойчивости существует много. На рис. 2 показаны лишь две главные зоны, которые представляют практический интерес. Остальные зоны исчезают уже при введении в систему коэффициента малого демпфирования k, которое всегда имеет место в реальных условиях.

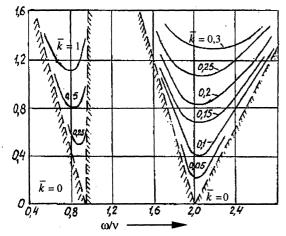


Рис. 2. Границы областей неустойчивости в зависимости от

$$h, \omega/\nu, \bar{k}$$
 (\bar{k} – мера устойчивости, $\bar{k} = \frac{k}{\gamma} = \frac{1}{2k} \ln \frac{a_n}{a_{n+1}}$)

По вертикальной оси отложены значения h, а по горизонтальной — относительной частоты возбуждения ω/ν . Одна из зон неустойчивости образуется вблизи резонанса $\omega/\nu=1$, а другая, главная, — вблизи так называемого параметрического резонанса $\omega/\nu=2$. Кривые границ зон неустойчивости приводятся для различных значе-

ний безразмерного коэффициента демпфирования свободных колебаний. Если, например, рассматривать область неустойчивости для h=0.8 и k=0.1, то в этом случае получается только одна зона неустойчивости вблизи параметрического резонанса $\omega=2\nu$, и эта зона соответствует интервалу $1.68\nu<\omega<2.33\nu$. При k=0.1 для $\omega=\nu$ порог возбуждения $\varepsilon=1$, а для $\omega=2\nu$ порог возбуждения $\varepsilon=0.4$. С ростом демпфирования порог возбуждения возрастает, причем во второй, главной, зоне он ниже.

Если принять величины h и k пропорциональными нагрузке на колесо вследствие периодического изменения последней, то мощность параметрического возбуждения, исходя из (4), равна 0,7. Относительная частота ω/ν при $\nu \approx 6$ Гц равна 2,42. Следовательно, данная система подрессоривания при V=36 км/ч обладает параметрической неустойчивостью, и для ее компенсации требуются дополнительные гасители, соответствующие k=0,17.

выводы

- 1. Рассматриваемая задача сведена к определению параметрических колебаний с одной степенью свободы. Получены зоны неустойчивости на гладкой дороге. Наиболее неблагоприятным отношением частоты собственных колебаний неподрессоренной массы к частоте угловых колебаний, подводимой к колесам, является $\omega/\nu=2$.
- 2. При заданном отношении ω/ν для обеспечения виброизоляции систем подрессоривания необходимо иметь соответствующее значение коэффициента затухания колебаний k. Для данной модели параметра возбуждения оно может быть выбрано по графикам рис. 2.

ЛИТЕРАТУРА

- 1. **Тимошенко С. П.** Колебания в инженерном деле. М.: Наука. 1967.
- 2. **Рейзина Г. Н.** О случайном возбуждении параметрических колебаний дополнительного подрессоривания / Conference Materials. Kyiv, 1998. C. 429.
- 3. Микулик Н. А., Рейзина Г. Н., Липницкая В. А. О параметрическом возбуждении систем подрессоривания. Матер. 54 НТК БГПА. Мн., 2000. Ч. 2. С. 139.