- максимальные динамические моменты на карданном валу привода заднего моста;
- темпы накопления усталостных повреждений по контактным и изгибным напряжениям зубчатых колес и роликовых подшипников. Сравнение проводилось по темпу накопления повреждений зубчатых колес по контактным напряжениям.

Результаты исследований на ЭВМ нагруженности деталей трансмиссии для различных режимов трогания и разгона приведены в табл. 2.

Проведенные исследования показали, что при трогании самосвала на ровном горизонтальном участке карьерной дороги при различных положениях педали управления двигателем (от 50 до 100 % нажатия) максимальный динамический момент на карданном валу привода заднего моста увеличился в 1,8 раза. Темп накопления усталостных повреждений зубчатых колес по контактным напряжениям возрос в 1,9 раза.

При увеличении крутизны преодолеваемого подъема с 0 до 0,1 максимальный динамический момент на карданном валу привода заднего моста увеличился в 1,3, а темп накопления повреждений R- в 1,9 раза.

Таблица 2 Результаты исследований на ЭВМ нагруженности трансмиссии карьерного самосвала

Условия трогания и разгона			Темп накопле- ния поврежде-
Уклон преодоле- ваемого подъема	Положение педали управления двигателем, %	Начальные обороты коленвала двигателя, мин ⁻¹	ний по контакт- ным напряжени- ям зубчатых колес заднего моста
0	70	955	1,52·10 ¹¹
0	100	955	2,15·10 ¹¹
0	100	1240	2,37·1011
0,1	100	1240	2,84·1011

С увеличением начальной частоты вращения коленчатого вала двигателя при трогании с места на первой передаче последовательно с 860 до 1240 мин⁻¹ максимальный динамический момент на карданном валу привода заднего моста повышается на 40 %.

Таким образом, одним из путей форсирования нагруженности трансмиссии карьерных самосвалов является увеличение доли переходных процессов в общем испытательном пробеге.

Рецензент канд. техн. наук, проф. МОЛИБОШКО Л. А.

УЛК 622.002.5

ПРОФИЛИРОВАНИЕ ПНЕВМОУБОРОЧНОГО СОПЛА

Докт. техн. наук, проф. КИСЛОВ Н. В.

Белорусская государственная политехническая академия

Промышленные пневмоуборочные и пылесосные устройства представляют собой мобильные агрегаты или стационарные установки для уборки сыпучих сред и удаления пыли, осевшей в производственных помещениях. Работа пневмоуборочной техники заключается во всасывании сыпучего материала из расстила или пыли, лежащей на полу, оборудовании и стенах производственных помещений.

Наиболее ответственным узлом пневмоуборочной установки, от которого зависят качество уборки и энергоемкость процесса, является устройство для всасывания материала из расстила или пыли с различных поверхностей, называемое обычно всасывающим соплом или уборочным инструментом. Известны различные модификации сопл [1], каждое из которых предназначено для специфических условий пневмоуборки. Наибольшее распространение в пневмоуборочной технике нашли наклонные всасывающие сопла с козырьком (рис. 1).

Конструктивное оформление таких сопл определяется условиями их функционирования и размерно-плотностными свойствами убираемого материала. Обеспечение рациональной конструкции сопла может быть достигнуто при условии, когда убираемые частицы при их транспортировании воздушным потоком находятся в сопле как можно меньше времени. Поэтому представляет интерес отыскание такого профиля сопла, при котором частица, достигшая во входном отверстии некоторой скорости $\vartheta_r = \frac{dl}{dt}$, затратит минимум времени на преодоление расстояния l по дуге, очерчивающей аэродинамическую ось сопла или, что практически то же самое, нижнюю ее грань (рис. 1).

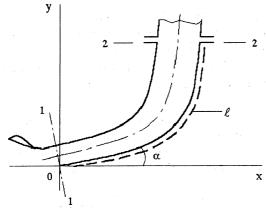


Рис. 1. Конструктивная схема сопла

Скорость ϑ воздуха в криволинейном канале всасывающей части сопла обычно изменяется по закону прямой линии (рис. 2) и подчиняется закономерности

$$\vartheta = \vartheta_{\rm px} - ky \,, \tag{1}$$

где $\vartheta_{\rm BX}$ — средняя скорость воздуха во входном сечении $1{\text -}1$ сопла; y — осевая координата сечения криволинейного канала сопла; k — коэффициент, величина которого характеризует интенсивность убывания скорости воздуха в криволинейном канале сопла.

Пусть закон изменения скорости частицы в криволинейном канале сопла (рис. 2)

$$\frac{dl}{dt} = (\vartheta_{r0} - \vartheta_s)e^{-ay} + \vartheta_s, \qquad (2)$$

где ϑ_{r0} – скорость входа частицы в сечение 1–1; ϑ_{s} – то же витания частицы; e – основание на-

туральных логарифмов; a — параметр формулы, характеризующий уменьшение скорости частицы по мере удаления от входного отверстия сопла по направлению y = f(x).

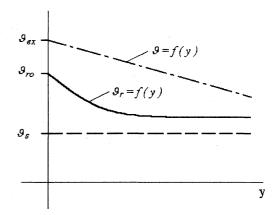


Рис. 2. Характер изменения скоростей ϑ воздуха и частицы ϑ, в криволинейном канале сопла

Определим профиль дуги l, очерчивающей нижнюю грань сопла. Дифференциал дуги [2]

$$dl = \sqrt{1 + y'^2} dx. \tag{3}$$

За критерий минимизации принимаем время, за которое частица проходит путь l (рис. 1) внутри криволинейного канала сопла. Из (2) и (3) имеем

$$dt = \frac{dl}{(\vartheta_{r0} - \vartheta_s)e^{-ay} + \vartheta_s} = \frac{\sqrt{1 + {y'}^2} dx}{(\vartheta_{r0} - \vartheta_s)e^{-ay} + \vartheta_s}.$$
(4)

Необходимо найти функцию y = f(x), при которой время $t = \min$, т. е. нужно минимизировать функционал вида

$$t = \int_{0}^{x_{2}} F(y, y') dx = \int_{0}^{x_{2}} \frac{\sqrt{1 + {y'}^{2}} dx}{(\vartheta_{r0} - \vartheta_{s})e^{-ay} + \vartheta_{s}}.$$
 (5)

Для нахождения функции y, соответствующей t_{\min} , необходимо решить уравнение Эйлера [2] $\frac{d}{dx}F'_{y'}-F'_{y}=0$. В частном случае, когда имеем F(y,y'), т. е. функция не содержит в явном виде x, первый интеграл уравнения Эйлера имеет вил

$$y'F'_{y'} - F = C_1,$$
 (6)

где C_1 — постоянная интегрирования; F — функционал искомой функции, содержащий в явном виде y и y'.

Первая производная функционала F по y'

$$F_{y'}' = \frac{y'}{\left[(\vartheta_{r0} - \vartheta_s)e^{-ay} + \vartheta_s \right] \sqrt{1 + {y'}^2}}.$$
 (7)

Подставив (7) в (6) с учетом того, что функционал F = dt, после преобразования имеем

$$y' = \sqrt{\frac{1 - C_1^2 \left[(\vartheta_{r0} - \vartheta_s) e^{-ay} + \vartheta_s \right]^2}{C_1^2 \left[(\vartheta_{r0} - \vartheta_s) e^{-ay} + \vartheta_s \right]^2}} . \tag{8}$$

Преобразовав (8) и разделив переменные, получим

$$\int \frac{C_1 \left[(\vartheta_{r0} - \vartheta_s) e^{-ay} + \vartheta_s \right]}{\sqrt{1 - C_1^2 \left[(\vartheta_{r0} - \vartheta_s) e^{-ay} + \vartheta_s \right]^2}} dy = \int dx + C_2 . \quad (9)$$

Разложим в степенной ряд $e^{-ay} = 1 - ay + \frac{(ay)^2}{2}$.

Погрешность $e^{-ay} = 1 - ay$ обозначим через Δ . Известно [2], что $\Delta \le (ay)^2/2$. Тогда

$$\int \frac{C_1 \left[(\vartheta_{r0} - \vartheta_s) e^{-ay} + \vartheta_s \right]}{\sqrt{1 - C_1^2 \left[(\vartheta_{r0} - \vartheta_s) e^{-ay} \left(1 - ay \right) + \vartheta_s \right]^2}} dy = x + C_2.$$
(10)

Решение (10) при начальном условии y(x=0)=0 дает зависимость

$$y = \frac{1}{a} \left[1 - \frac{\sqrt{\frac{1}{C_1^2} - a^2 (\vartheta_{r0} - \vartheta_s)^2 (C_2^2 + x)} - \vartheta_s}{\vartheta_{r0} - \vartheta_s} \right].$$
(11)

Формула (11) при известных значениях *х* и *у* в сечениях 1–1 и 2–2 позволяет находить для вполне конкретных аэродинамических характеристик убираемого материала такие профиль входной части пневмоуборочного сопла и угол его наклона, при которых частицы будут находиться в сопле минимум времени.

ЛИТЕРАТУРА

- 1. **Хрусталев Б. М., Кислов Н. В.** Пневматический транспорт. Мн.: Информ. служба недвижимости. 451 с.
- 2. **Федорюк М. В.** Обыкновенные дифференциальные уравнения. М.: Наука, 1980. 352 с.

Рецензент канд. техн. наук, доц. ЦЫБУЛЕНКО П. В.