ЛИТЕРАТУРА

1. **Веренько В. А.** Дорожные композитные материалы: Структура и механические свойства. – Мн.: Навука і тэхніка, 1993. – 296 с.

2. **Веренько В. А.** Методика подбора состава асфальтобетона с максимальным уровнем надежности. – Деп. в ВИНИТИ, 1333–800. – ОСТ 6.500. – 14 с.

УДК 621.385

ПРИМЕНЕНИЕ МЕТОДА ИМИТАЦИОННОГО МОДЕЛИРОВАНИЯ ДЛЯ РЕШЕНИЯ СЛОЖНЫХ ЗАДАЧ ГОРНОГО ПРОИЗВОДСТВА

Канд. техн. наук, доц. ШПУРГАЛОВ Ю. А.

Белорусский национальный технический университет

Для получения значительных практических результатов от использования популярного в настоящее время метода математического моделирования применительно к исследованию прикладных проблем горного производства необходим системный подход, позволяющий учитывать большое количество взаимосвязанных физико-технологических и организационных процессов.

Однако существующая практика оптимизации производственной деятельности калийных рудников как большой системы, включающей ряд взаимосвязанных подсистем, основанная на аналитическом математическом моделировании, не в полной мере соответствует современным требованиям.

В статье предпринята попытка разработать и обосновать подход, позволяющий с помощью метода имитационного моделирования свести сложную прикладную математическую задачу к более простой, решение которой может быть получено известными классическими методами.

Условиями применения такого подхода яв-ляются: выделение из множества искомых не-мей известных величин \overline{X}_n -неходя из их физического смысла и дополнительных исследований, подмножества \overline{X}_k независимых (друг от друга и остальных неизвестных (\overline{X}_{n-k})) неизвестных величин, определение значений границ изменения неизвестных независимых величин, а также установление достаточной степени точности их определения.

Аналитическая задача для решения производственной проблемы горного производства в самом общем виде может быть формализована таким образом:

$$\begin{cases} F(\overline{X}_{n}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}) \rightarrow \text{extr;} \\ \Phi_{r}(\overline{X}_{n}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}) \leq 0, \quad r \in [1, R]; \\ Q_{s}(\overline{X}_{n}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}) = 0, \quad s = [1, S], \end{cases}$$
(1)

где F – целевая функция модели; $\Phi_r(\overline{X}_n, \overline{A}_I)$ $\overline{B}_L, \overline{C}_p, \overline{D}_O$) – математическое выражение r-го ограничения; R – их количество; $Q_s(\overline{X}_n, \overline{A}_I, \overline{B}_I)$ $\overline{C}_p, \overline{D}_Q$) – математическое выражение s-го условия, которому должно удовлетворять решение задачи; S – их количество; $\overline{X}_n \in \{x_1, x_2, ..., x_n\}$ - подмножество переменных неизвестных величин; $\overline{A}_{I} \in \{a_{1}, a_{2}, ..., a_{I}\}$ – подмножество постоянных детерминированных параметров; $\overline{B}_L \in \{b_1, b_2, ..., b_L\}$ – подмножество стохастических параметров, закон распределения которых известен; $\overline{C}_{p} \in \{c_{1}, c_{2}, ..., c_{p}\}$ – закон стохастических параметров, закон распределения которых не известен; $\overline{D}_{O} \in \{d_{1}, d_{2}, ..., d_{O}\}$ – подмножество параметров, характеризующих активное противодействие.

Предполагается, что в результате подготовки i-го имитационного эксперимента будет определено подмножество k независимых переменных величин $\overline{X}_k^{(i)}$. В процессе подстановки

в (1) в качестве известных величин предварительно определенных неизвестных $\overline{X}_{k}^{(i)}$ модель упростится. Тогда можно найти оставшиеся неизвестные путем решения упрощенной модели (1):

$$X_{j}^{(i)} = f_{j}(\overline{X}_{k}^{(i)}, x_{k+1}, ..., x_{j-1}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}),$$

$$j \in [k+1, n].$$
(2)

Проведенные исследования позволили представить имитационную модель для численной реализации аналитической задачи (1) в виде:

$$\begin{cases} \overline{X}_{k} = \overline{X}_{k}^{(i)}, & i \in [1, k]; \\ X_{j}^{(i)} = f_{j}(\overline{X}_{k}^{(i)}, x_{k+1}, ..., x_{j-1}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}), \\ & j \in [k+1, n]; \\ F(\overline{X}_{n}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}) \rightarrow \text{extr}; \\ \Phi_{r}(\overline{X}_{n}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}) \leq 0, & r \in [1, R]; \\ Q_{s}(\overline{X}_{n}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}) = 0, & s = [1, S]. \end{cases}$$

$$(3)$$

Представленная в виде (3) имитационная модель позволяет исследовать зависимость полученного решения от стохастических параметров \overline{C}_p и \overline{D}_0 , которые могут быть заменены в модели возможными вариантами их значений $\overline{C}_{p}^{\;\;(i)}$ и $\overline{D}_{O}^{\;\;(z)}$, определенными в процессе подготовки имитационного эксперимента. Опыт решения практических задач на базе использования имитационных моделей (3) показал, что актуальна проблема создания таких моделей для калийного производства, которые объединяли бы преимущества аналитических, имитационных и интуитивных (инженерных, эвристических) моделей.

Настоящие достижения в разработке средств вычислительной техники позволяют реализовать эту идею. Для этого разработаны специальные имитационные математические модели, названные интеграционными, которые формализованы выражениями (4)–(12):

$$\overline{X}_k = \overline{X}_k^{(i)}; \tag{4}$$

$$x_{i} = f_{i}(\overline{X}_{k}^{(i)}, x_{k+1}, ..., x_{i-1}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}), \quad i \in [k+1, m];$$
(5)

$$\begin{cases}
\overline{X}_{k} = \overline{X}_{k}^{(i)}; & (4) \\
x_{i} = f_{i}(\overline{X}_{k}^{(i)}, x_{k+1}, \dots, x_{i-1}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}), & i \in [k+1, m]; \\
x_{i} \approx \text{M3M}_{i} \left\{ \overline{x}_{k}^{(i)}, x_{k+1}, \dots, x_{m}, \dots, x_{i-1} \right\}, & i \in [m+1, n]; \\
\begin{cases}
F(x_{n+1}, \dots, x_{p}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}, \overline{X}_{n}^{(i)}) \to \text{extr}; \\
\mathcal{O}_{r}(x_{n+1}, \dots, x_{p}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}, \overline{X}_{n}^{(i)}) \leq 0, & r \in [1, R]; \\
Q_{q}(x_{n+1}, \dots, x_{p}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}, \overline{X}_{n}^{(i)}) = 0, & q \in [1, Q]; \\
x_{n} > 0, \dots, x_{n+1} > 0, \dots, x_{p} > 0; \\
E(\overline{X}_{p}^{(i)}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}) \to \text{extr}; \\
M_{S}(\overline{X}_{p}^{(i)}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}) \leq 0; \\
N_{t}(\overline{X}_{p}^{(i)}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}) = 0.
\end{cases} \tag{13}$$

$$F(x_{n+1},...,x_p,\overline{A}_I,\overline{B}_L,\overline{C}_p,\overline{D}_Q,\overline{X}_n^{(i)}) \to \text{extr};$$
 (7)

$$\Phi_r(x_{n+1},...,x_p,\overline{A}_I,\overline{B}_L,\overline{C}_p,\overline{D}_Q,\overline{X}_n^{(i)}) \leq 0, \quad r \in [1,R]; \tag{8}$$

$$Q_{q}(x_{n+1},...,x_{p},\overline{A}_{I},\overline{B}_{L},\overline{C}_{p},\overline{D}_{Q},\overline{X}_{n}^{(i)}) = 0, \quad q \in [1,Q];$$
(9)

$$x_n > 0, ..., x_{n+1} > 0, ..., x_p > 0;$$
 (10)

$$E(\overline{X}_{p}^{(i)}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}) \rightarrow \text{extr};$$
 (11)

$$M_{\mathcal{S}}(\overline{X}_{p}^{(i)}, \overline{A}_{I}, \overline{B}_{L}, \overline{C}_{p}, \overline{D}_{Q}) \le 0; \tag{12}$$

$$N_t(\overline{X}_p^{(i)}, \overline{A}_I, \overline{B}_L, \overline{C}_p, \overline{D}_Q) = 0. \tag{13}$$

Данные модели представляют объединение (интеграцию) трех типов моделей: имитационных (4), (5), интуитивных (6) и аналитических (7)–(9).

Выражения (10)-(12) есть аналитическое выражение общей оптимизационной математической модели, включающей все неизвестные

переменные \overline{X}_p , решение которой представлено в виде совокупности решений задачи (4)–(9). Таким образом, решение задачи с помощью интеграционной имитационной модели (4)–(12) включает следующие этапы (процедуры):

1. Определение на стадии подготовки имитационного эксперимента І вариантов подмножеств неизвестных переменных, состоящих из k элементов, каждый $X_k^{(i)}$, $i \in [1, I]$.

- 2. Нахождение подмножества неизвестных переменных $\overline{X}_{p}^{(i)}$, $p \in [k+1,m]$, определяемых с помощью имитационных моделей.
- 3. Определение подмножества неизвестных переменных $\overline{X}_{p}^{(i)}$, $p \in [m+1,n]$ с помощью интуитивных (эвристических) моделей.
- 4. По предварительно определенным n неизвестным переменным $\overline{X}_n^{(i)}$ с помощью одной или нескольких аналитических моделей определяются остальные неизвестные $\overline{X}_p^{(i)}$, $p \in [n+1,p]$.
- 5. Полученный вариант решения проверяется на удовлетворяемость ограничениям и условиям изначальной оптимизационной, формализованной в виде сложной аналитической модели задачи и рассчитывается значение критерия оптимальности для i-го варианта решения. Такой имитационный эксперимент повторяется I раз и выбирается оптимальное решение $\overline{X}_p^{(0)}$.

Формализованную выражениями (4)–(12) интеграционную модель для ее эффективного практического применения необходимо представить в виде пакета программ для ЭВМ, позволяющего максимально автоматизировать процесс моделирования.

Автором разработан и представлен подход, позволяющий выдать задание инженеру-программисту в виде функциональной блок-схемы отдельных модулей, описывающих алгоритм

определения неизвестных величин. Установлены информационные потоки между модулями, в том числе управляющие. Такой подход представления моделей отличается тем, что одновременно может быть использовано и аналитиками, и программистами.

В качестве примера применения метода имитационного моделирования может служить решение задачи выбора оптимальных параметров варианта развития горных работ для рудников ПО «Беларуськалий», где определяются дата, время и последовательность отрабатываемых участков шахтных полей, применяемая для этого технологическая схема, тип и номер комплекта очистного и проходческого оборудования.

выводы

- 1. Решение задач современного горного производства, сформулированных исходя из представлений системного анализа, может быть получено за счет использования разработанных и представленных имитационных, интеграционных математических моделей.
- 2. Обоснован алгоритм решения прикладных задач горного производства с использованием имитационных интеграционных моделей.
- 3. Разработку имитационной математической модели, в том числе и интеграционной, можно считать законченной, если разработано задание инженеру-программисту для создания специальной программы для ЭВМ, позволяющей реализовать данную модель.