n an an Arran an Arr

УДК 628.112

РАСЧЕТ СИЛОВОГО ВОЗДЕЙСТВИЯ НА ФИЛЬТР СКВАЖИНЫ ПРИ ГАЗОИМПУЛЬСНОЙ РЕГЕНЕРАЦИИ

Канд. техн. наук, доц. ИВАШЕЧКИН В. В.

Белорусский национальный технический университет

Регенерация фильтров водозаборных скважин от кольматирующих отложений относится к энерго- и ресурсосберегающим технологиям, так как позволяет снизить затраты на добычу воды и продлить срок работы скважины. На кафедре гидравлики БНТУ разработан способ восстановления дебита скважин путем сжигания водород-кислородной газовой смеси (ВКГС) во взрывной камере, помещенной в полость фильтра [1]. К основным компонентам воздействия на кольматирующие отложения при этом способе очистки относят ударную волну, волны сжатия и гидропоток знакопеременного направления.

Цель настоящей работы – определение нагрузок, действующих на закольматированный фильтр при воздействии на него гидропотока.

На рис. 1 представлена расчетная схема по определению импульсного воздействия.

В зоне очишаемого фильтра жестко закреплена взрывная камера в форме полого цилиндра 1 с отражателем 2. Между цилиндром и отражателем выполнено цилиндрическое отверстие 3 высотой h'. Взрывная камера состоит из камеры сгорания 4 и рабочей камеры 5, которая представляет пространство, заключенное между границей газ – жидкость и отверстием. Объем рабочей камеры – переменный и изменяется в зависимости от положения границы газ жидкость. Под отражателем закреплен воздушный колпак 6, а в кольцевом зазоре между цилиндром и стенкой фильтра 7 установлен пакер 8. Колпак снабжен обтекателем 9. Комбинация «пакер – воздушный колпак» призвана направить гидропоток не в лежащий выше ствол скважины, а в сторону колпака, который снизит инерционные потери и позволит разгонять

Рис. 1. Расчетная схема

Вестник БНТУ, № 1, 2004

жидкость в рабочей камере до высоких скоростей, т. е. сообщать ей значительную кинетическую энергию.

Заполнив камеру сгорания газовой смесью, ее поджигают. Продукты взрыва, как поршень, воздействуют на жидкость в рабочей камере, вытесняя ее через отверстие, образуя радиальное течение, направленное под углом 90° к стенке фильтра. Поток растекается по цилиндрической стенке фильтра, устремляется через кольцевой зазор в полость воздушного колпака, сжимая там воздух.

За некоторый «разгонный» интервал времени скорость жидкости в рабочей камере возрастает от 0 до $v_{1\text{max}}$ в сечении 1–1 и некоторое время сохраняет максимальное значение, затем из-за падения давления в камере сгорания и роста давления воздуха в колпаке (сечение 2–2) убывает до нуля. Поэтому движение жидкости в рабочей камере на стадии расширения продуктов взрыва можно разделить на три этапа: этап разгона со скоростями от 0 до $v_{1\text{max}}\left(\frac{dv}{dt} > 0\right)$, этап квазиустановившегося дви-

жения со скоростью $v_{1\max}\left(\frac{dv}{dt}=0\right)$ и этап тор-

можения со скоростями от $v_{1\max}$ до $0\left(\frac{dv}{dt}<0\right)$.

Рассмотрим этап квазиустановившегося движения, характеризующийся максимальным динамическим воздействием на стенку фильтра. Рассечем фильтр вертикальной диаметральной плоскостью и определим силу давления гидропотока R_y, действующую на правую и левую боковые стенки фильтра. Так как фильтр симметричен, нагрузки на него справа и слева диаметральной плоскости тоже будут симметричны. Выделим расчетный отсек жидкости, проведя контрольную поверхность ω по концентрическим цилиндрическим сечениям 3-3 и 4-4 и горизонтальным полукольцевым сечениям 5-5 и 6-6. Жидкость втекает в отсек через сечение 3-3 и вытекает через сечение 6-6. Применим к расчетному отсеку уравнение количества движения, сделав следующие допущения: 1) движение жидкости в отсеке - установившееся и соответствует этапу движения в рабочей камере со скоростью v_{1max}; 2) скорости в живых сечениях 3-3 и 6-6 распределены равномерно и равны соответствующим средним скоростям v_3 и v_6 ; 3) касательными напряжениями на поверхности фильтра пренебрегаем; 4) фильтр считаем полностью закольматированным и поэтому непроницаемым; 5) весом жидкости в отсеке пренебрегаем.

Получим уравнение количества движения в проекциях на ось *y*, заменив действие стенки фильтра на поток силой *N*, равной силе R_y по величине, но направленной в противоположную сторону ($R_y = -N$). Сила R_y является искомой, так как выражает силовое воздействие гидропотока на боковую поверхность фильтра.

Окончательно получим следующее уравнение в проекциях на ось Оу:

$$R_{y} = K \square_{3y} + P_{3y} - F_{y}, \qquad (1)$$

где К $Д_{3y}$ – проекция количества движения в сечении 3–3 на ось Oy; P_{3y} – проекция силы давления в сечении 3–3 на ось Oy; F_y – сила бокового давления водонасыщенного грунта на наружную поверхность стенки фильтра.

Силу P_{3y} найдем как сумму всех проекций элементарных радиальных сил давления dP_{3r} на ось Oy

$$P_{3y} = \int_{0}^{\pi} dP_{3r} \sin \theta , \qquad (2)$$

где θ – угол между линией действия силы dP_{3r} и осью Ox.

Элементарную радиальную силу dP_{3r} найдем по формуле

$$dP_{3r} = p_3 r_3 d\Theta h' , \qquad (3)$$

где p_3 – давление в сечении 3–3; $r_3d\theta h'$ – площадь элементарной площадки, на которую действует сила dP_{3r} .

При подстановке (3) в (2) и интегрировании получим

$$P_{3y} = \int_{0}^{\pi} p_{3}r_{3}h'\sin\theta d\theta = p_{3}d_{3}h', \qquad (4)$$

где d_3 – диаметр сечения 3–3.

Величину $KД_{3y}$ рассчитаем как сумму проекций элементарных радиальных количеств движения $dKД_{3r}$ на ось Oy

$$d\mathbf{K}\mathcal{A}_{3y} = \int_{0}^{\pi} d\mathbf{K}\mathcal{A}_{3r}\sin\theta \,. \tag{5}$$

Величину *d*КД₃, определим следующим образом:

$$d\mathbf{K}\mathcal{A}_{3r} = \alpha_0 \rho dQ v_{3\max} , \qquad (6)$$

где α_0 – корректив количества движения (коэффициент Буссинеска); ρdQ – элементарная секундная масса жидкости, проходящая через элементарную площадку $r_3 d\theta h'$. Элементарный расход dQ, входящий в выражение (6), равен

$$dQ = v_{3\max} r_3 d\Theta h' \,. \tag{7}$$

После подстановки (7) в (6) получим

$$dK\mathcal{A}_{3r} = \alpha_0 \rho v_{3\max}^2 h' r_3 d\theta.$$
(8)

После интегрирования

$$K \mathcal{I}_{3y} = \alpha_0 \rho v_{3\max}^2 h' d_3.$$
 (9)

Подставив (4) и (9) в (1), получим

$$R_{y} = \left(p_{3} + \alpha_{0}\rho v_{3\max}^{2}\right)d_{3}h' - F_{y}.$$
 (10)

Давление p_3 и скорость v_{3max} в сечении 3–3 можно выразить через соответствующие параметры p_1 и v_{1max} в сечении 1–1, соединив эти сечения уравнением Д. Бернулли и уравнением неразрывности:

$$\begin{cases} p_1 + \frac{\alpha v_{1\max}^2}{2} \rho = p_3 + \frac{\alpha v_{3\max}^2}{2} \rho + \sum \zeta_{1-3} \frac{v_{1\max}^2}{2} \rho; (11) \\ v_{1\max} \frac{\pi d_1^2}{4} = v_{3\max} \pi d_3 h'. \end{cases}$$
(12)

Здесь $\Sigma\zeta_{1-3}$ – суммарный коэффициент сопротивления на участке 1–3, выраженный в долях скоростного напора в^{*}сечении 1–1. Учитывая, что $d_3 = d_1 + 2\delta$, где δ – толщина стенки рабочей камеры, введем обозначение: $k = \frac{d_3}{d_1} \approx 1,05$ с учетом реальной толщины стенки.

Решив совместно (11) и (12), получим

$$p_{3} = p_{1} + \frac{v_{1\max}^{2}}{2} \rho \left[\alpha - \Sigma \xi_{1-3} - \left(\frac{d_{1}}{4kh'} \right)^{2} \right].$$
(13)

Давление p_1 можно определить как давление продуктов взрыва в камере сгорания в конце периода разгона из предположения об адиабатном законе расширения

$$p_1 = p_{\rm B3p} \left(\frac{h}{h+z_1}\right)^n, \qquad (14)$$

где $p_{взр}$, h – давление и толщина слоя продуктов взрыва в камере сгорания перед расширением; n – коэффициент адиабаты продуктов; z_1 – длина участка разгона жидкости.

Подставим выражения (13), (14) в (10)

$$R_{y} = \left\{ p_{\text{BSP}} \left(\frac{h}{h+z_{1}} \right)^{n} + \rho v_{1\text{max}}^{2} \left[\left(\frac{d_{1}}{4kh'} \right)^{2} \left(\alpha_{0} - \frac{\alpha}{2} \right) + 0.5 \left(\alpha - \Sigma \xi_{1-3} \right) \right] \right\} d_{3}h' - F_{y}.$$
(15)

Неизвестные z_1 и $v_{1\text{max}}$ можно определить, записав уравнение неустановившегося движения для этапа разгона жидкости в системе «рабочая камера – воздушный колпак» при следующих допущениях: жидкость – несжимаема, а стенки трубопровода – абсолютно жесткие, потери напора рассчитываются по формулам для расчета потерь при установившемся движении по скорости v_{1ycr} на данном пути *z*.

Уравнение движения имеет вид

$$\sum_{i=1}^{3} m_{i} \frac{d^{2}z}{dt^{2}} = P_{\text{p.k}} - P_{\text{B.k}} - \sum P_{\text{Tp}}, \qquad (16)$$

где
$$m_1 \frac{d^2 z}{dt^2} = \rho \omega_1 [l + h' - (h + z)] \frac{d^2 z}{dt^2}$$
 – сила инер-
ции жидкости в рабочей камере; $m_2 \frac{d^2 z}{dt^2} =$
 $= \rho \omega_1 (l_{\kappa} + h' + h'') \frac{d^2 z}{dt^2}$ – то же в кольцевом
зазоре длиной $(l_{\kappa} + h' + h''); \quad m_3 \frac{d^2 z}{dt^2} =$
 $= \rho \omega_1 (z + h'') \frac{\omega_1}{\omega_2} \frac{d^2 z}{dt^2}$ – то же в воздушном кол-
паке; $P_{p.\kappa} = p_{взp} \left(\frac{h}{h+z}\right)^n \omega_1$ – сила давления в

сечении 1-1; $P_{\text{в.к}} = p_{\kappa} \left(\frac{l_{\kappa}}{l_{\kappa} - z \frac{\omega_1}{\omega_2}} \right)^{n_1} \omega_1 - \text{сила}$

давления со стороны воздушного колпака с начальным давлением воздуха p_{κ} , приведенная к сечению 1–1, где n_1 – коэффициент адиабаты воздуха; $\sum P_{\rm rp} = \rho \omega_1 \frac{\zeta_{\rm сист}}{2} v_{\rm lycr}^2$ – равнодействующая сил сопротивления на участке 1–2, где

$$\zeta_{\text{сист}} = \left[\sum \zeta_{1-3} + \zeta_{\kappa,3} \left(\frac{\omega_1}{\omega_4} \right)^2 + \zeta_{\kappa,\pi} \right] - суммарный$$

коэффициент сопротивления на участке 1–2; $\zeta_{\kappa,3}$, $\zeta_{\kappa,n}$ – соответственно коэффициенты сопротивлений кольцевого зазора, кольцевого поворота.

Подставив все слагаемые в уравнение (16), приняв $d_1 = d_2$ и разделив на р $\omega_1 L$, где $L = l - -h + 2(h' + h'') + l_{\kappa}$, получим

$$\frac{d^2 z}{dt^2} = \frac{p_{\rm B3P}}{\rho L} \left(\frac{h}{h+z}\right)^n - \frac{p_{\kappa}}{\rho L} \left(\frac{l_{\kappa}}{l_{\kappa}-z}\right)^{n_1} - \frac{\zeta_{\rm CHCT}}{2L} v_{\rm lycr}^2.$$
(17)

Учитывая, что $v = \frac{dz}{dt}; \ \frac{d^2z}{dt^2} = \frac{dv}{dt} = v\frac{dv}{dz},$

разделим переменные, проинтегрируем правую и левую части и получим

$$\frac{1}{2}v_1^2 = \frac{p_{B3p}h^n}{\rho L(h+z)^{n-1}(1-n)} - \frac{p_{\kappa}l_{\kappa}^{n_1}}{\rho L(n_1-1)(l_{\kappa}-z)^{n_1-1}} - \frac{\zeta_{CHCT}z}{2L}v_{1ycT}^2 + C$$

Постоянную интегрирования C найдем из начальных условий: при z = 0; v = 0. Получим выражение для скорости неустановившегося движения v_1 в рабочей камере при заданном zна стадии разгона

$$v_{1} = \sqrt{\frac{1}{L} \left\{ \frac{2p_{BBP}h}{\rho(n-1)} \left[1 - \left(\frac{h}{h+z}\right)^{n-1} \right] - \frac{2p_{\kappa}l_{\kappa}}{\rho(n_{1}-1)} \left[\left(\frac{l_{\kappa}}{l_{\kappa}-z}\right)^{n_{1}-1} - 1 \right] - \zeta_{CHCT}v_{1ycT}^{2}z \right\}}.$$
 (18)

При подстановке условий, соответствующих окончанию этапа разгона: $z = z_1$; $v_{1ycr} = v_{1max}$; $\frac{d^2 z}{dt^2} = 0$, в выражение (17) получим

$$\frac{p_{\text{B3p}}}{\rho L} \frac{h^n}{(h+z_1)^n} - \frac{p_{\kappa}}{\rho L} \left(\frac{l_{\kappa}}{l_{\kappa}-z_1}\right)^{n_1} - \frac{\zeta_{\text{CHCT}}}{2L} v_{1\text{max}}^2 = 0.$$

Отсюда

$$v_{1\max} = \sqrt{\frac{2}{\rho} \left[p_{B3p} \left(\frac{h}{h+z_1} \right)^n - p_{\kappa} \left(\frac{l_{\kappa}}{l_{\kappa}-z_1} \right)^{n_1} \right]}{\zeta_{CHCT}}} . \quad (19)$$

При подстановке $z = z_1$ в выражение (18) также получим формулу для расчета v_{1max}

$$v_{1\max} = \sqrt{\frac{1}{L} \left\{ \frac{2p_{B3p}h}{\rho(n-1)} \left[1 - \left(\frac{h}{h+z_1}\right)^{n-1} \right] - \frac{1}{2} \right\}}$$

$$-\frac{2p_{\kappa}l_{\kappa}}{\rho(n_1-1)}\left[\left(\frac{l_{\kappa}}{l_{\kappa}-z_1}\right)^{n_1-1}-1\right]-\zeta_{\rm CHCT}v_{1\,\rm max}^2z_1\right\}.$$
 (20)

Решая совместно выражения (19) и (20), определим неизвестные величины v_{1max} и z_1 .

Силу *F_y*, входящую в (15), можно определить

$$F_{y} = p_{y}\omega_{\phi} = p_{y}d_{\phi}h', \qquad (21)$$

где ω_{ϕ} – площадь диаметрального сечения по наружной стенке фильтра диаметром d_{ϕ} ; p_y – боковое давление водонасыщенного грунта.

Не рискуя получить заниженные значения бокового давления, можно воспользоваться формулами для определения максимальных давлений сыпучих грунтов на гладкие подпорные стенки [2]. Согласно уравнению предельного равновесия максимальное активное боковое давление p_{y} составит

$$p_{y} = \gamma_{r} H tg^{2} \left[45^{\circ} - \frac{\varphi}{2} \right], \qquad (22)$$

где γ_r – удельный вес грунта; φ – угол внутреннего трения водоносных пород; H – глубина залегания водоносных пород.

Для большинства рыхлых водоносных по-. род при $\varphi = 25...35^{\circ}$ величина tg $\left[45^{\circ} - \left(\frac{\phi}{2}\right)\right]$ изменяется в пределах 0.4...0.27.

Расчетное значение силы давления гидропотока R_y , с одной стороны, не должно превышать максимальное значение, соответствующее прочности фильтра N_{ϕ} , с учетом трех-пятикратной импульсной обработки фильтра за период эксплуатации скважины, с другой стороны, оно должно быть не ниже минимального значения N_p , соответствующего прочности кольматирующих отложений на растяжение [σ_p].

Зная значения N_{ϕ} и N_{p} и используя формулу (16), подбирают необходимые энергетические и геометрические параметры взрывной камеры.

Пример.

Дано: Размеры взрывной камеры: $d_1 = 0,105$ м; $d_3 = 0,12$ м; l = 1 м; h = 0,1 м; $h' = d_1/4 = 0,026$ м. Размеры воздушного колпака: $d_2 = d_1 = 0,105$ м; $l_{\kappa} = 0,2$ м; h'' = 0,16 м. Размеры фильтра: $d_4 = 0,15$ м; $d_{\phi} = 0,25$ м. Толщина непроницаемого сцементированного гравия $\delta = 0,05$ м. Прочность сцементированного гравия на растяжение [σ_p] = 0,5 МПа. Плотность грунтов водоносного горизонта $\rho_r = 2650$ кг/м³; $\phi = 30^\circ$. Объемная масса скелета грунта $\rho_c = 2000$ кг/м³. Глубина H = 80 м, коэффициенты адиабат продуктов взрыва n = 1,17 и воздуха $n_1 = 1,4$; $p_{взр} = 10(p_{атм} + + \rho qH)$, где $p_{атм}$ – атмосферное давление.

Найти: Силу давления на стенку фильтра R_y и растягивающие напряжения σ_p в слое сцементированного гравия. Сравнить с разрушающими напряжениями [σ_p].

Решение: Определяем

$$p_{\text{взр}} = 10(p_{\text{атм}} + \rho q H) =$$

= 10(98100 + 1000 · 9,81 · 80) = 8829000 Па.

Определяем $\Sigma \xi_{1-3}$ так же, как для цилиндрического затвора в напорной трубе по табл. 3.23 [3]. Для $h'/d = 0.25 \Sigma \xi_{1-3} \approx 2$.

Коэффициент сопротивления $\xi_{\kappa,n}$ кольцевого поворота потока в воздушный колпак на 180° определяем по диаграмме 6–25 при всасывании [4]. Для $h''/d_1 = 1,6$ и при отношении площади кольцевого зазора $\omega_{\kappa,3} = \pi (d_4^2 - d_3^2)/4$ к площади камеры $\omega_1 = \pi d_1^2/4$ ($f = \omega_{\kappa,3}/\omega_1$), равном 0,75, и ($d_3 - d_1$)/2 $d_1 = 0,05$, получим $\xi_{\kappa,n} = 2$. Пренебрегая потерями по длине в кольцевом зазоре, получим

$$\xi_{\text{сист}} = \Sigma \xi_{1-3} + \xi_{\text{к.п}} = 2 + 2 = 4.$$

Решив совместно (19) и (20), получим

$$v_{1\text{max}} = 22,4$$
 м/с при $z_1 = 0,11$ м.

Определим удельный вес водонасыщенного грунта с учетом взвешивающего влияния воды

$$\gamma_r = g\rho_c (\rho_r - 1000)/\rho_r =$$

= 9,81 · 2000 · (2650 - 1000)/2650 = 12216 H/M³.

Тогда сила F_y рассчитывается на основании (22)

 $F_y = 12216 \cdot 80 \text{tg}^2 [45^\circ - 15^\circ] \cdot 0.25 \cdot 0.026 = 2096 \text{ H}.$

Находим R_y

$$R_{y} = \left\{ 8829000 \left(\frac{0,1}{0,1+0,11} \right)^{1.17} + 1000 \cdot 22,4^{2} \left[\left(\frac{0,105}{4 \cdot 1,05 \cdot 0,026} \right)^{2} \left(1 - \frac{1}{2} \right) + 0,5(1-2) \right] \right\} \times 0,12 \cdot 0,026 - 2096 = 11563 - 2096 = 9467 \text{ H}.$$

Определяем напряжение в закольматированной стенке фильтра

$$\sigma = R_y / (2h' \cdot \delta) = 9467 / (2 \cdot 0.026 \cdot 0.05) =$$

= 3641154 Πa = 3.6 MΠa.

Для разрушения сцементированной гравийной обсыпки необходимо, чтобы $\sigma \ge [\sigma_p]$. Так как 3,6 МПа > 0,5 МПа, декольматация обеспечена.

выводы

1. С учетом ряда допущений предложены результаты аналитических исследований по расчету динамических нагрузок, действующих на закольматированные фильтры при их импульсной регенерации с использованием газообразных энергоносителей.

2. Полученные формулы можно использовать при назначении режимов обработки фильтров с учетом их прочностных характеристик и обеспечения разрушения загрязнений.

ЛИТЕРАТУРА

1. Ивашечкин В. В., Козлов Д. А., Сабадах Б. В. Использование водорода в качестве энергоносителя в аппаратах для очистки фильтровых труб скважин // Энергетика... (Изв. высш. учеб. заведений). – 1984. – № 10. – С. 118–122.

2. Цитович Н. А. Механика грунтов. – М.: Высш. шк., 1983. – 288 с.

3. Курганов А. М., Федоров Н. Ф. Гидравлические расчеты систем водоснабжения и водоотведения: Справ. – 3-е изд., перераб. и доп. – Л.: Стройиздат, 1986. – 440 с.

4. Идельчик И. В. Справочник по гидравлическим сопротивлениям. – 2-е. изд. – М.: Машиностроение, 1975. – 559 с.

УДК 625.7.03

РАЗВИТИЕ МЕТОДА КОЭФФИЦИЕНТА БЕЗОПАСНОСТИ ДВИЖЕНИЯ НА АВТОМОБИЛЬНЫХ ДОРОГАХ

Инж. БОГДАНОВИЧ Ю. А.

Белорусский национальный технический университет

Изменение состояния проезжей части в течение года из-за воздействия осадков в виде дождя или снега, обледенения и т. п. приводит к уменьшению величины коэффициента сцепления колеса автомобиля с покрытием и, следовательно, к снижению скорости движения автомобилей. Известно, что элементы плана трассы в той или иной мере влияют на величину изменения скорости, но совместное влияние с погодно-климатическими факторами практически не изучено. Влияние погодных факторов и геометрических параметров автомобильной дороги изучалось в основном раздельно. Например, влияние геометрических параметров автомобильных дорог на режимы движения автомобилей отражено в [1, 2], погодных факторов -- Эв [3-6]. Участки дорог на кривых в плане даже при благоприятных погодных условиях являются участками с повышенной вероятностью заноса автомобилей, что вынуждает водителя на подходе к закруглению снижать скорость движения. С ухудшением состояния проезжей части изменение режимов движения автомобиля становится заметнее.

Снижение скорости движения автомобилей на опасных участках, в частности на кривых в плане, не является достаточно полной информацией о режимах и степени его опасности. Используемый ныне метод коэффициентов безопасности для оценки безопасности движения, разработанный В. Ф. Бабковым в 1963 г., характеризует транспортно-эксплуатационные показатели соседних участков автомобильной дороги, исходя из соотношения гарантированных на этих участках скоростей. Иначе говоря, он основан на анализе эпюры фактических скоростей движения по автомобильной дороге: мест перехода от большей к меньшей скорости движения в зоне влияния опасного участка дороги. К недостаткам существующего метода определения значений коэффициентов безопасности, соответствующих уровням опасности участка дороги, можно отнести то, что не учитывается отношение абсолютных скоростей величина перепада скоростей, интенсивность изменения скорости и длина участка, на котором происходит ее снижение. Поэтому коэффициент безопасности можно дифференцировать по степени опасности дорожного движения, если исходить из величины абсолютной скорости в начале участка торможения, перепада скоростей на этом участке и, наконец, длины самого участка, на котором это изменение скорости происходит.

Таким образом, весь процесс изменения скорости можно описать уравнением

$$v_s = v_0 e^{-kas} , \qquad (1)$$