УДК 528.5

ОБОСНОВАНИЕ МЕТОДИКИ И ТОЧНОСТИ ГЕОДЕЗИЧЕСКИХ НАБЛЮДЕНИЙ ЗА ДЕФОРМАЦИЯМИ ЗДАНИЯ КНИГОХРАНИЛИЩА НАЦИОНАЛЬНОЙ БИБЛИОТЕКИ РЕСПУБЛИКИ БЕЛАРУСЬ В ПЕРИОД ЭКСПЛУАТАЦИИ

Канд. техн. наук, проф. НЕСТЕРЕНОК М. С.

Белорусский национальный технический университет

Геодезический мониторинг осадки и горизонтальных перемещений здания высотного книгохранилища и лифтовой башни проводился в процессе возведения (ноябрь 2002 - май 2005 г.), но вынужденно был прекращен в апреле 2005 г., поскольку знаки опорной геодезической сети были утрачены при вертикальной планировке и обустройстве прилегающей территории, а деформационные знаки – вследствие интенсивного развития работ по отделке помещений и монтажу оборудования. Прерванный геодезический контроль за перемещениями здания высотного книгохранилища и стабильностью его геометрии подлежит возобновлению, как и принято в практике эксплуатации сложных уникальных сооружений. В настоящей статье приводится научное обоснование методики и точности обозначенных геодезических исследований.

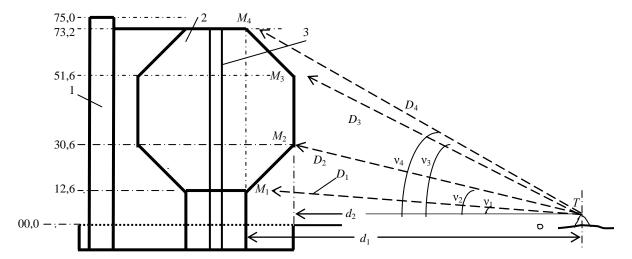
На стадии строительства геодезические работы по определению осадки, крена и точности монтажа здания высотного книгохранилища, а также крена лифтовой башни включали:

- 1) выборочные контрольные исполнительные съемки несущих конструкций по внешнему контуру каркаса высотного книгохранилища на отметках 30,6; 51,6 и 73,2 м и определение пространственных смещений контрольных точек этих конструкций (исполнители кафедра инженерной геодезии БНТУ и УП «Геокарт»);
- 2) измерения осадки фундамента книгохранилища и лифтовой башни в процессе строительства (исполнитель РУП «Геосервис»);
- 3) определение крена здания книгохранилища и лифтовой башни в процессе строительства (исполнители кафедра геодезии БНТУ и УП «Геокарт»);
- 4) определение деформаций и крена каркаса высотного книгохранилища при раскружалива-

нии его железобетонных конструкций (исполнители – кафедра инженерной геодезии БНТУ и УП «Геокарт»).

На стадии возведения каркаса высотного книгохранилища его железобетонные конструкции поддерживались системой кружал на стальных опорах, установленных на песчаных домкратах, которые в свою очередь опирались на кольцо жесткости, расположенное на отметке +12,6 м [1]. К началу раскружаливания (с 29.02.05 по 04.03.05) по теоретическим расчетам осадка объекта прогнозировалась около 80 мм, но фактическая осадка фундаментной плиты книгохранилища оказалась 40 мм при неравномерности 1 мм (погрешность измерения осадки составила около 0,3-0,5 мм, погрешность определения неравномерности осадки -0,15-0,3 мм). В процессе раскружаливания и в последующие два месяца неравномерность осадки фундамента не превысила 0,3-0,4 мм и практически не повлияла на результаты измерения горизонтальных и вертикальных смещений контрольных знаков высотной части книгохранилища.

При раскружаливании измерялись общие деформации каркаса. Для их определения был принят метод угловых измерений при помощи теодолита Т05 (угловая погрешность $m_{\beta} = 0,5-1$ "). Достигнутая точность измерения горизонтальных смещений наружных точек каркаса составила 1,5–2 мм. Средние фактические значения измеренных вертикальных смещений ΔH марок на заданной отметке характеризуются погрешностями $m_{\Delta H, \text{средн}} \approx 0,7$ мм. Отклонения $\pm \delta H$ от среднего значения ΔH соизмеримы с погрешностями $m_{\Delta H}$. Методика и результаты измерений описаны в [2]. Обобщенные данные о смещениях внешних точек каркаса приведены в табл. 1.


Измеренные значения перемещений деформационных знаков каркаса высотной части книгохранилища после раскружаливания

Номер цикла	0	1	2	3	4	5	6	7
Дата на 2005 г.	29.01	02.02	09.02	12.02	19.02	24.02	02.04	16.04
Изменения температуры								
каркаса	0	+2°	-5°	+3°	+4°	+2°	+12°	+19°
Исправленные с учетом температуры средние перемещения и отклонения от средних								
По радиусу: ΔR , мм,	_	+2,0	+2,8	+3,3	+4,7	+4,0	+3,3	+2,6
$\pm\delta R$, mm	_	±1,0	±1,3	±1,0	±1,8	±2,3	±2,1	±1,9
Осадка на отметках								
30,6 м: ΔH , мм,	_	-2,5	-4,0	-4,4	-3,9	-4,8	-5,6	-6,9
$\pm \delta H$, mm	_	±1,5	±1,2	±1,0	±1,5	±0,7	±1,2	±1,0
51,6 m: Δ <i>H</i> , mm,	_	-3,2	-4,3	-4,9	-4,8	-4,3	-6,7	-7,9
$\pm \delta H$, mm	_	±1,3	±1,0	±1,3	±0,8	±1,2	±1,5	±1,0
73,2 м: ΔH , мм,	_	-3,8	-4,5	-5,5	-4,8	-4,9	-7,9	-9,5
$\pm \delta H$, mm	_	±1,6	±1,4	±1,2	±1,1	±1,4	±1,7	±1,9
Вероятный крен, мм,	-	0,7	0,6	0,8	0,3	1,6	2,0	2,2
на отметке 73,2 м	-	±1	±1	±1,5	±2,0	±1,8	±1,5	±1,8

Вероятностные результаты измерений показали, что в процессе раскружаливания с 29.02.05 по 04.02.05 силовые деформации объемного модуля книгохранилища соответствовали расчетным и были кратковременными. По данным циклов 3-5 в измеренных значениях вертикальных и горизонтальных смещений были выявлены температурные составляющие деформаций, отвечающие изменениям средней температуры конструкций. В циклах 6 и 7 при незначительном приращении осадки фундамен- (≤ 0.4) MM) выявлены горизонтальнорадиальные смещения контрольных точек контура конструкций по радиусам относительно

ядра жесткости величиной $\Delta R \approx -1,5$ мм и вертикальные смещения $\Delta H \approx -2$; -3,6 и -4,7 мм на отметках 30,6; 51,6 и 73,2 м. Приведенные данные геодезических измерений послужили основой вывода [2] о том, что высотные объекты здания Национальной библиотеки Республики Беларусь в процессе строительства не претерпели деформаций, осадки и крена, выходящих за пределы их расчетных проектных величин.

Расположение одной из наблюдательных станций при возобновлении геодезического мониторинга смещений высотного здания книгохранилища показано на рис. 1.

 $Puc.\ 1$. Проект схемы наблюдений деформационных точек на здании высотного книгохранилища Национальной библиотеки Республики Беларусь: 1 – лифтовая башня; 2 – высотное книгохранилище; 3 – ядро жесткости; T – тахеометр; $M_1,\ M_2,\ M_3,\ M_4$ – места деформационных марок; $v_1,\ v_2,\ v_3,\ v_4$ – углы наклона; $D_1,\ D_2,\ D_3,\ D_4$ – дальности

При организации и проведении геодезического мониторинга осадки и крена здания высотного книгохранилища, а также лифтовой башни, находящихся в эксплуатации, точность геодезических измерений следует устанавливать согласно требованиям Технического кодекса существующей практики геодезических работ в строительстве [3]:

• допустимая погрешность измерения осадки

$$\Delta x_H = 1 \text{ MM}; \tag{1}$$

• допустимая погрешность измерения крена для точки на высоте H_i

$$\Delta x_{\kappa i} = 0.0001 H_i. \tag{2}$$

Для точности показателей (1) и (2) необходимо учитывать требования ГОСТ 26433.0–85, согласно которому для геодезических работ в строительстве допускаются методы и средства геодезических измерений, обладающие метрологическими параметрами и удовлетворяющие условиям:

$$\delta_{r,cp} \le 0.16\Delta x;$$
 (3)

$$\delta_{\Gamma,\Pi D} \le 0.4 \Delta x,$$
 (4)

где $\delta_{\Gamma,\text{ср}}$ и $\delta_{\Gamma,\text{пр}}$ — соответственно средняя квадратическая суммарная погрешность и предельная погрешность принимаемого метода и средств измерений; Δx — допустимое отклонение измеряемого геометрического параметра, определенное условиями (3) и (4), а также требованиями к геометрической точности строительства [4].

При измерениях деформаций строительных конструкций условие (1) допускается заменять следующим условием, применяемым в процессе и при контроле точности изготовления и установки элементов:

$$\delta_{\Gamma} \le 0.2\Delta x.$$
 (5)

Следовательно, средства и методы нивелирных измерений должны характеризоваться предельной погрешностью определения вертикальных перемещений (осадки) фундаментов и цоколя

$$(\delta_{r,cp}) \le 0.4\delta_r = 0.4 \text{ mm}. \tag{6}$$

Требование (6) реализуется методами нивелирования I и II классов.

Согласно условиям (2) и (5) приращения крена здания книгохранилища на высотах 12,6; 51,6 и 73,2 м должны определяться с предельной погрешностью соответственно 0,5; 2 и 3 мм, рассчитанной по формуле

$$(\delta_{\Gamma})_{\text{KDEH }i} \le 0.4 \cdot 0.0001 H_i = 0.00004 H_i.$$
 (7)

Горизонтальная составляющая приращения крена в направлении, перпендикулярном створу «угломерный прибор — марка», должна определяться с предельной погрешностью

$$m_{\rm B} \le 0.00004 H_i \rho''/D.$$
 (8)

Здесь $\rho'' = 206265'' -$ число секунд в радиане.

При $D \le 200$ м; $H_i = 12,6$; 51,6 и 73,2 м требования к точности измерения горизонтальных углов составляют $m_{\beta} = 0,5$ "; 2" и 3", каковым отвечают теодолит T05 и электронный тахеометр TC1200.

Вертикальная составляющая отклонений может определяться с помощью тахеометра TC1200 по схеме тригонометрического нивелирования визированием на контрольные точки M_i (рис. 1). Расчетная погрешность определяемого превышения составляет

$$m_h^2 = 2[(m_D \sin v_1)^2 + (m_v D/\rho'' \cos v_1)^2],$$
 (9)

где $m_D = 2$ мм — погрешность лазерного дальномера; v — углы наклона дальностей D; m_v — средняя квадратическая погрешность угла наклона.

При $m_D = 2$ мм; $v = 17^\circ$; $D \le 200$ м; $m_v = 2''$ получаем оценку погрешности $m_h \le 3,1$ мм. Следовательно, вертикальные смещения контрольных точек на отметках 12 м и выше определяются тригонометрическим нивелированием с точностью, удовлетворяющей геометрическому критерию (4) при $\Delta x \le 10$ мм по [4].

Рассмотренная методика геодезического мониторинга стабильности пространственного положения и геометрии высотного здания книгохранилища Национальной библиотеки Беларуси рассчитана на применение электронного

тахеометра ТС1200, угловая точность которого составляет 1", линейная – 2 мм.

выводы

- 1. Результаты геодезического контроля осадки и горизонтальных перемещений здания высотного книгохранилища и лифтовой башни, проводившегося в процессе их возведения, показали, что высотные объекты Национальной библиотеки Республики Беларусь в процессе строительства не претерпели деформаций, осадки и крена, выходящих за пределы их расчетных проектных величин.
- 2. Дано научное обоснование методики и точности геодезического мониторинга пространственных смещений уникального высотного здания книгохранилища Национальной библиотеки Республики Беларусь в процессе его эксплуатации.

ЛИТЕРАТУРА

- 1. **Конструктивно-технологические** особенности возведения высотного здания книгохранилища Национальной библиотеки Беларуси / Л. М. Шохина [и др.] // Строительная наука и техника. 2006. N 1 (4). C.3—15.
- 2. **Нестеренок, М. С.** Методы и результаты контрольных геодезических работ при строительстве высотного книгохранилища Национальной библиотеки Республики Беларусь / М. С. Нестеренок, В. Ф. Нестеренок, В. Н. Вексин // Автоматизированные технологии изысканий и проектирования. 2005. № 3 (18). С. 15–18.
- 3. **Технический** кодекс установившейся практики. Геодезические работы в строительстве: ТКП-45 / Производство работ. Минск, 2006.
- 4. **Несущие** и ограждающие конструкции: СНиП 3.03.01–87. М.: АПП ЦИТП, 1991.

Поступила 10.10.2006