УДК 629.7.01

ЗАВИСИМОСТЬ НАДЕЖНОСТИ КАМЕРЫ СГОРАНИЯ ТУРБОВАЛЬНОГО АВИАЦИОННОГО ДВИГАТЕЛЯ ОТ ЕГО ГАЗОДИНАМИЧЕСКИХ ПАРАМЕТРОВ И ГЕОМЕТРИЧЕСКИХ ХАРАКТЕРИСТИК

Асп. МИРОНОВ Д. Н.

Белорусский национальный технический университет

Камера сгорания – один из наиболее ответственных модулей, подвергающихся как статическим, так и динамическим нагрузкам под воздействием высоких температур. Эти факторы и являются причиной, по которой данному модулю уделяют повышенное внимание при оценке надежности и долговечности.

Существующие методики оценки долговечности наиболее уязвимых элементов авиационного двигателя с течением времени морально устаревают либо настолько дорогостоящи, что применение их на практике нецелесообразно. Поэтому перед современным двигателестроением стоит задача усовершенствования существующих либо создания новых методик, позволяющих с минимальными материальными и интеллектуальными затратами и высокой степенью достоверности определять долговечность камеры сгорания авиационного двигателя.

В настоящей работе предлагается решение данной проблемы с помощью одного из современных методов – метода множественной линейной регрессии, сущность которого заключается в следующем. Первоначально производится сбор статистических параметров авиационных двигателей отечественного и зарубежного производства. После их анализа и обработки собранных данных определяются коэффициенты β эмпирической зависимости и подставляются в выражение

Re
$$s = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_n x_n$$
, (1)

где Re s – ресурс авиационного двигателя; $x_1,...,x_n$ – параметры рабочего процесса и геометрические характеристики авиационного двигателя.

Согласно методу множественной линейной регрессии набору фиксированных значений

независимых переменных $X = \{X_0, X_1, X_2, ..., X_k\}$ ставится в соответствие значение переменной $\operatorname{Re} s_i$.

При составлении алгоритма вычисления коэффициентов уравнения регрессии используется матричная форма записи системы уравнений и ее решения

$$b = \begin{bmatrix} b_0 \\ \vdots \\ b_k \end{bmatrix} = (X^T X)^{-1} X^T \operatorname{Re} s, \qquad (2)$$

где b_0 , b_1 , ..., b_k – определяемые в процессе численного эксперимента коэффициенты уравнения регрессии; X – матрица параметров и геометрических характеристик двигателей; Res – матрица-столбец значения ресурса двигателей.

Таким образом, после осуществления вычислительного процесса по выражению (2) получаем значение коэффициентов в уравнении регрессии для определения ресурса двигателя.

Для наиболее тщательного изучения ресурса авиационного двигателя было предложено рассматривать силовую установку как совокупность модулей: компрессор, камера сгорания, турбина. Из всего многообразия параметров модулей выбраны лишь те, которые наиболее полно описывают конструкцию и газодинамические процессы, а также не имеют математической связи между собой. К таким параметрам камеры сгорания у турбовальных двигателей относят: T_r^* — максимальную температуру газов перед турбиной; God — год создания авиационного двигателя и b — его ширину.

В численном эксперименте использовалось порядка 21 авиационного двигателя отечественного и зарубежного производства (табл. 1, 2).

38 Вестник БНТУ, № 5, 2006

Таблица 1 Параметры авиационных турбовальных двигателей отечественного и зарубежного производства

Двигатель	<i>Ne</i> , л. с	М, кг	$T_{\!\!\scriptscriptstyle\Gamma}^*$, K	God	l, mm	<i>b</i> , мм	$c_{ m yg}$, кг/ч	π_k	Res, ч
TB3-117BMA	2200	293	1263	1987	2055	660	485,1	9,4	1500
TB3-117BM-02	2000	293	1263	1993	2055	660	441	9,4	1500
TB3-117BM	2200	293	1263	1983	2055	660	497,2	9,4	1500
TB3-117BMA-03	2200	293	1263	1998	2055	660	485,1	9,4	1500
TB3-117KM	2200	285	1263	1977	2055	650	506	9,4	1500
ТВ3-117ВМА-Ф	2500	310	1288	1999	2055	660	210	9,43	1500
TB7-117B	2500	380	1530	2000	1780	635	208	17	1500
TB3-117B	2100	285	1263	1981	2055	660	463,05	9,4	1500
ARRIEL 2S1	856	130	1410	1996	1080	500	529	6	3000
ARRIUS 2K1	670	115	1410	1993	968	470	412,1	6	3000
ТВ3-117ВК	2200	285	1263	1985	2055	660	485,1	9,4	1500
ARRIEL 2C2	944	145	1430	1997	1015	498	583,4	8	3000
ARRIEL 2B	848	130	1410	1994	1080	500	524,1	8	3000
ARRIEL 1K1	738	120	1380	1987	1090	430	767,2	6,5	4000
ARRIEL 2C1	839	145	1410	1996	1015	498	518,5	8	3000
ARRIEL 1D1	732	120	1380	1989	1090	430	463,4	7	4000
ARRIEL 1E2	738	120	1380	1991	1090	430	467,2	7	4000
ARRIEL 1C2	738	120	1380	1993	1090	430	467,2	7	3000
PT6T-3TWIN-PAC	900,5	294	1430	1968	1702	1118	536,7	6	6500
PT6T-6	1025,3	317	1430	1990	1702	1118	617,2	7	6500
ARRIUS 2B1	670	111	1270	1996	947	404	412,1	5,1	2500

Таблица 2 Параметры камер сгорания турбовальных авиационных двигателей

Двигатель	$T_{\!$	God	<i>l</i> , мм	<i>b</i> , мм	Res, ч
TB3-117BMA	1263	1987	2055	660	1500
TB3-117BM-02	1263	1993	2055	660	1500
TB3-117BMA-03	1263	1998	2055	660	1500
ТВ3-117ВМА-Ф	1288	1999	2055	660	1500
TB7-117B	1530	2000	1780	635	1500
ARRIEL 2S1	1410	1996	1080	500	3000
ARRIUS 2K1	1410	1993	968	470	3000
ARRIEL 2C2	1430	1997	1015	498	3000
ARRIEL 1K1	1380	1987	1090	430	4000
ARRIEL 2C1	1410	1996	1015	498	3000
ARRIEL 1E2	1380	1991	1090	430	4000
PT6T-3TWIN-PAC	1430	1968	1702	1118	6500
PT6T-6	1430	1990	1702	1118	6500
ARRIUS 2B1	1270	1996	947	404	2500

При использовании названной методики была получена эмпирическая зависимость для расчета ресурса камеры сгорания авиационного двигателя. Проверка адекватности выведенного уравнения на двигателях, участвующих в про-

цессе численного эксперимента, показала, что точность зависимости составила порядка 65 %. Анализ полученного результата (погрешность вычисления) показал, что в абсолютном виде параметры камеры сгорания применять нецелесообразно, так как они значительно отличаются друг от друга по порядку и вносят большую погрешность в расчет ресурса камеры сгорания двигателя. Это и уменьшает точность уравнения.

Для снижения погрешности уравнения регрессии принято решение о переводе всех параметров в относительный вид таким образом, чтобы они принадлежали интервалу от 0 до 1:

$$\overline{T_{\Gamma}^{*}} = \frac{T_{\Gamma}^{*}}{T_{\Gamma \max}^{*}}; \quad \overline{God} = \frac{God}{God_{\max}};$$

$$\overline{l} = \frac{l}{l_{\max}}; \quad \overline{b} = \frac{b}{b_{\max}},$$
(3)

где, $\overline{T_{\rm r}^*}$, \overline{God} , \overline{l} , \overline{b} — соответственно относительные величины температуры газов перед турбиной, года создания, длины и ширины;

Вестник БНТУ, № 5, 2006

 $T_{_{\Gamma \, {
m max}}}^{*}$, $God_{_{
m max}}$, $I_{_{
m max}}$, $b_{_{
m max}}$ – базовые значения этих же величин.

Максимальные значения базовых параметров выбираются таким образом, чтобы их величины были больше максимального значения соответствующих величин, представленных в табл. 2. Значение базовых величин выбрано следующим образом:

$$T_{\rm max} = 1900 \; {\rm K}; \qquad God_{\rm max} = 2008 \; ;$$

$$I_{\rm max} = 4100 \; {\rm mm}; \qquad b_{\rm max} = 2000 \; {\rm mm}.$$

Таким образом, после описанных выше преобразований с помощью формул (3) и (4) получим следующие данные (табл. 3).

Таблица 3 Относительные параметры камер сгорания турбовальных авиационных двигателей

Двигатель	$\overline{T_{\Gamma}^{*}}$, K	\overline{God}	\overline{l} , mm	\bar{b} , mm	Res , ч
TB3-117BMA	0,665	0,99	0,501	0,33	0,15
TB3-117BM-02	0,665	0,993	0,501	0,33	0,15
TB3-117BMA-03	0,665	0,995	0,501	0,33	0,15
ТВ3-117ВМА-Ф	0,678	0,996	0,501	0,33	0,15
TB7-117B	0,805	0,996	0,434	0,318	0,15
ARRIEL 2S1	0,742	0,994	0,263	0,25	0,3
ARRIUS 2K1	0,742	0,993	0,236	0,235	0,3
ARRIEL 2C2	0,753	0,995	0,248	0,249	0,3
ARRIEL 1K1	0,726	0,99	0,266	0,215	0,4
ARRIEL 2C1	0,742	0,994	0,248	0,249	0,3
ARRIEL 1E2	0,726	0,992	0,266	0,215	0,4
PT6T-3TWIN-PAC	0,753	0,98	0,415	0,559	0,65
PT6T-6	0,753	0,991	0,415	0,559	0,65
ARRIUS 2B1	0,668	0,994	0,231	0,202	0,25

После выполнения аналогичных преобразований и вычислений, используя данные табл. 3, эмпирическая зависимость для расчета ресурса камеры сгорания примет вид

$$\overline{\text{Re } s_{\text{KC}}} = 19,039 + 0,502 \overline{T_{\Gamma}^*} - 19,205 \overline{God} -$$

$$-0,926\overline{I} + 0,965\overline{b},$$
(5)

где $\overline{\text{Re } s_{\text{KC}}}$ — относительное значение ресурса камеры сгорания.

Определим ресурс камеры сгорания авиационных двигателей, используемых в расчетах (табл. 3), по выражению (5). Результаты расче-

тов приведены в табл. 4, где $\overline{\text{Re }s_{\text{КСпракт}}}$ – статистическое значение ресурса авиационного двигателя; $\overline{\text{Re }s_{\text{КСтеор}}}$ – значение ресурса камеры сгорания авиационного двигателя, полученное с помощью выражения (5).

Таблица 4
Проверка адекватности эмпирической зависимости на двигателях, участвующих в процессе численного эксперимента

Авиационный двигатель	$\overline{\text{Re } s_{\text{KCnpakT}}}$	Re S _{KCTEOP}
TB3-117BMA	0,15	0,214
TB3-117BM-02	0,15	0,157
TB3-117BMA-03	0,15	0,118
ТВ3-117ВМА-Ф	0,15	0,106
TB7-117B	0,15	0,22
ARRIEL 2S1	0,3	0,32
ARRIUS-2K1	0,3	0,35
ARRIEL 2C2	0,3	0,319
ARRIEL 1K1	0,4	0,352
ARRIEL 2C1	0,3	0,332
ARRIEL 1E2	0,4	0,313
PT6T-3TWIN-PAC	0,65	0,751
PT6T-6	0,65	0,54
ARRIUS-2B1	0,25	0,266

 $\frac{{
m Ka\kappa}}{{
m Re}\,s_{
m KCnpakt}}$ и $\frac{{
m Re}\,s_{
m KCreop}}{{
m Re}\,s_{
m KCreop}}$ равны 0,307 и 0,311.

С целью углубленной проверки адекватности полученного уравнения произведем расчет ресурса семи авиационных двигателей, не участвовавших в процессе численного эксперимента (табл. 5).

Таблица 5
Параметры камер сгорания турбовальных авиационных двигателей, не участвовавших в процессе численного эксперимента

Двигатель	T^*_{Γ} , K	God	l, mm	b, mm	Res, ч
TB3-117BM	1263	1983	2055	660	1500
TB3-117KM	1263	1977	2055	650	1500
TB3-117B	1263	1981	2055	660	1500
ТВ3-117ВК	1263	1985	2055	660	1500
ARRIEL 2B	1410	1994	1080	500	3000
ARRIEL 1D1	1380	1989	1090	430	4000
ARRIEL 1C2	1380	1993	1090	430	3000

Результаты расчетов с помощью эмпирической зависимости (5) для двигателей, не участвовавших в процессе численного эксперимента, представлены в табл. 6.

40 Вестник БНТУ, № 5, 2006

Таблица 6 Проверка адекватности уравнения регрессии на двигателях, не участвовавших в процессе численного эксперимента

Авиационный двигатель	Re S _{KCпракт}	Re S _{KCTeop}
TB3-117BM	0,15	0,253
ТВ3-117КМ	0,15	0,306
TB3-117B	0,15	0,272
ТВ3-117ВК	0,15	0,234
ARRIEL 2B	0,30	0,339
ARRIEL 1D1	0,40	0,332
ARRIEL 1C2	0,30	0,294

Средние значения $\text{Re } s_{\text{КСпракт}}$ и $\text{Re } s_{\text{КСтеор}}$ табл. 6 соответственно равны 0,228 и 0,29.

вывод

Как видно из приведенных примеров, эмпирическая зависимость (5) пригодна для расчета ресурса камеры сгорания авиационного двигателя с определенной степенью точности. Значения ресурса, рассчитанного с помощью полученной зависимости, как видно из табл. 6, на 0,062 единиц больше ресурса, опираясь на который эксплуатируются авиационные двигатели на сегодняшний день. В абсолютных величинах это составляет 620 ч налета. То есть двигатель с данной камерой сгорания может эксплуатироваться еще порядка трех лет, а он

преждевременно отправляется в ремонт или на свалку, что влечет за собой громаднейшие дополнительные материальные затраты.

С помощью полученного уравнения регрессии можно также решать задачи по определению недостающих параметров зарубежных двигателей.

ЛИТЕРАТУРА

- 1. **Акимов, В. М.** Основы надежности газотурбинных двигателей / В. М. Акимов. М., 1981.
- 2. **Гнеденко, Б. В.** Математические методы в теории надежности / Б. В. Гнеденко, Ю. К. Беляев, А. Д. Соловьев. М., 1965.
- 3. **Лозицкий, Л. П.** Конструкция и прочность авиационных газотурбинных двигателей / Л. П. Лозицкий, А. Н. Ветров, С. М. Дорошко. М., 1992.
- 4. **Штода, А. В.** Конструкция авиационных газотурбинных двигателей / А. В. Штода, В. А. Секистов, В. В. Кулешов. Киев, 1982.
- 5. **Гнеденко, Б. В.** Курс теории вероятностей / Б. В. Гнеденко. М., 1996.
- 6. **Большев**, Л. **Н.** Таблицы математической статистики / Л. Н. Большев, Н. В. Смирнов. М., 1965.
- 7. **Акимов, В. М.** Теория и расчет воздушнореактивных двигателей / В. М. Акимов [и др.]. – М., 1987.
- 8. **Коровкин, В.** Д. // Труды V научных чтений по косманавтике, посвященных памяти выдающихся советских ученых пионеров освоения космического пространства / В. Д. Коровкин, М. М. Цховребов. М., 1983. С. 45–47.

Поступила 15.11.2005

УДК 621.85.052.44

ФИЗИКО-ХИМИЧЕСКИЕ ОСНОВЫ АДГЕЗИИ КОМПОНЕНТОВ ПРИВОДНЫХ ЗУБЧАТЫХ РЕМНЕЙ И ИХ ВЛИЯНИЕ НА ЭКСПЛУАТАЦИОННЫЙ РЕСУРС

Канд. техн. наук, доц. БАХАНОВИЧ А. Г.

Белорусский национальный технический университет

Приводной зубчатый ремень является вязкоупругой полимерной анизотропной системой элементов, взаимосвязанных посредством адгезионных связей (рис. 1). Для обеспечения прочности связи используют адгезионные компоненты, основными составляющими которых являются синтетические смолы.

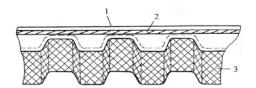


Рис. 1. Зубчатый ремень: 1 – наполнитель; 2 – несущий слой; 3 – износостойкая тканевая обкладка

Вестник БНТУ, № 5, 2006 41