величины эффективного коэффициента теплопередачи. Как видно из зависимостей (рис. 3), потери давления в модуле теплообменника

с оребренными плоскими трубами, установленными в сердцевине без зазора между вершинами ребер, не отличаются от потерь давления, измеренными в модуле, оребренные трубы которого установлены с зазором 0,5 мм.

выводы

1. В результате проведенных экспериментальных исследований было показано. что появление зазора между вершинами ребер в сердцевине теплообменника из плоских труб с подрезным оребрением приводит к ощутимому снижению эффективного коэффициента теплопередачи. Установлено, что при достижении величины зазора в 1 мм уменьшение эффективного коэффициента теплопередачи может достигать более 20 %. Снижение потерь давления потока воздуха при его движении через оребренную поверхность теплообменника менее существенно.

УДК 621.785.53

2. Полученные экспериментальные результаты позволяют после нахождения максимальной величины зазора, обусловленного погрешностью настройки оборудования и инструмента для получения ребер, точностью установки заготовки в технологическом оборудовании, а также выполнения погрешностью габаритных размеров заготовки, определять максимальную величину отклонения теплопередающих характеристик теплообменника от расчетных. Это дает возможность выполнять расчет теплообменников с меньшей погрешностью.

ЛИТЕРАТУРА

1. **Мрочек, Ж. А.** Определение интенсивности теплообмена при конвекции воздуха в межреберном пространстве плоских труб / Ж. А. Мрочек, А. И. Дьяков // Машиностроение. – 2006. – № 21. – 220 с.

2. Жукаускас, А. А. Конвективный перенос в теплообменниках / А. А. Жукаускас. – М.: Наука, 1982. – 472 с.

3. **Преображенский, В. П.** Теплотехнические измерения и приборы / В. П. Преображенский. – М.: Энергия, 1978. – 440 с.

Поступила 25.05.2007

ОПТИМИЗАЦИЯ ПРОЦЕССОВ НАСЫЩЕНИЯ СТАЛИ КАРБИДООБРАЗУЮЩИМИ ЭЛЕМЕНТАМИ В СИСТЕМАХ НА ОСНОВЕ Cr-Ti-V и Cr-Ti-Mn

Канд. техн. наук ШМАТОВ А. А.

Белорусский национальный технический университет

Изучение обших закономерностей формирования многокомпонентных диффузионных карбидных слоев, их структуры и фазового состава как функции условий ХТО теряет смысл, если нет подробного изучения свойств покрытий. При этом главным этапом в научных исследованиях является оптимизация процессов по наиболее важным эксплуатационным свойствам. Результат оптимизации выявление оптимальных _ режимов ХТО и составов насыщающих смесей, обеспечивающих максимальные значения требуемых свойств.

В настоящей работе для уменьшения количества экспериментов оптимизация процессов насыщения стали тремя карбидообразующими элементами решалась с использованием метода симплексных решеток [1]. Основная залача применения этой методики лежит в определении областей с экстремальными свойствами. Примером успешного использования метода симплекспланирования являются результаты исследования свойств многокомпонентных карбидных систем и покрытий в работах [2–5].

Наибольший интерес в вопросе выбора оптимальных составов насыщающих смесей при насыщении стали карбидообразующими элементами представляют карбидные системы на основе Cr–Ti–V, Cr–Ti–Mn. Это связано с тем, что в данных системах наблюдаются наиболее высокие показатели механических свойств (микротвердости и износостойкости) [6].

связи со R сказанным выше целью настояшей работы явились: оптимизация смесей составов насышающих лля трехкомпонентного насыщения стали по износостойкости и микротвердости; выявление причин экстремального повышения указанных свойств: изучение структуры, фазового состава и кинетики роста оптимизированных карбидных слоев.

Объекты и методика исследований. Одно-, двух-И трехкомпонентные карбидные покрытия в системах на основе Cr-Ti-V, Cr-Ti-Мп были получены на инструментальной стали У8 (0,8 % С) методом ХТО в идентичных условиях. Стальные образцы помещали в контейнер из жаропрочной стали, заполненный специально приготовленной порошковой насыщающей смесью. которую герметизировали плавким затвором. Затем контейнер с образцами был загружен в электрическую печь, разогретую до температуры 1100 °С, где выдерживали 6 ч. Насыщающую смесь предварительно получали алюминотермическим метолом путем восстановлением оксидов металлов алюминием в порошковых смесях следующего состава, мас. %:

98 % (50 % Al_2O_3 + 35 % Me_xO_y + 15 % Al) + + 2 % NH_4Cl , где оксиды Me_xO_y = Cr_2O_3 , TiO_2 , V_2O_5 , MnO_2 являлись поставщиками карбидообразующих металлов. Когда в нее дополнительно добавляли активатор (2 % NH_4Cl), смесь для XTO была готова к употреблению.

Испытания на абразивную износостойкость карбидных слоев проводили на машине типа ХБ-4 при скорости вращения абразивного круга 0,5 м/с, радиальной подаче испытываемого

образца 1 мм на оборот и статической нагрузке 1 МПа. Об абразивном износе судили по потере массы после испытания образцов. Испытания на износ карбидных покрытий в условиях сухого трения скольжения проводили на машине типа Шкоды – Савина. Износ покрытия оценивали объемом лунки, образованной за 20 мин диском из ВКЗ при нагрузке 1 МПа и скорости его вращения 1 м/с. Показатель относительной износостойкости К_w карбидных покрытий при обоих видах износа определяли формуле: по $K_w = \Delta m_2 / \Delta m_1 (V_2 / V_1)$, где Δm_1 – потеря массы образца с покрытием; Δm_2 – то же без покрытия (в условиях абразивного изнашивания); V₁ – объем лунки для образца с покрытием; V2 – объем лунки для образца с хромированным покрытием (при сухом трении скольжения).

Оптимизацию составов насыщающих смесей с помощью математического симплекспланирования осуществляли на основании 19 экспериментальных опытов в каждой из карбидных систем на основе Cr-Ti-V, Cr-Ti-Mn [1]. С целью снижения трудоемкости работы определение параметров при расчете математических молелей И построение диаграмм «cocтав – свойство» во всем концентрационном треугольнике проводили с помощью ЭВМ.

Результаты исследований. В настоящей работе проведена оптимизация порошковых смесей в трехкомпонентных системах на основе Cr–Ti–V, Cr–Ti–Mn по микротвердости, износостойкости при абразивном изнашивании и сухом трении скольжения карбидных слоев на стали У8.

Для примера рассмотрим оптимизацию карбидных покрытий на стали У8 по абразивной износостойкости в системе на основе Cr-Ti-V. Согласно методу симплекспланирования составлена матрица планирования (табл. 1), в которой параметром являлась оптимизации v относительная абразивная износостойкость є исследуемых карбидных слоев, а в качестве независимых переменных взяты поставщики карбидообразующих элементов: $Cr_2O_3(x_1)$, TiO₂ (x_2) , V_2O_5 (x_3) . Причем сумма оксидов металлов Ме_хО_у в Ст-Ті-V порошковой смеси, содержащей 98 % (50 % $Al_2O_3 + 35$ % $Me_xO_y + 15$ % Al) + 2 % NH_4Cl , была постоянной, т. е. сумма $Cr_2O_3 + TiO_2 + V_2O_5$ равна 100 % (или 1 – в долевом соотношении). Поскольку значения параметров оптимизации, а также дисперсии опытов сильно различались, все величины для расчетов логарифмировали.

В настоящей работе получены математические модели второго, третьего и четвертого порядков, описывающие изменение абразивной износостойкости Cr-Ti-V карбидных слоев от состава насыщающей смеси. После проверки по *t*-критерию модели второй третьей степеней И оказались неадекватными, а модель четвертой степени адекватной и имела следующий вид: для абразивной износостойкости карбидных покрытий в системе на основе Cr-Ti-V

 $y = 3,1x_1 + 2,3x_2 + 5,4x_3 + 6,5x_1x_2 - 8,5x_1x_3 +$ $+ 3,7x_2x_3 - 7,2x_1x_2(x_1 - x_2) - 15,8x_1x_3(x_1 - x_3) +$ $+ 13,0x_2x_3(x_2 - x_3) - 3,7x_1x_2(x_1 - x_2)^2 +$ $+ 24,4x_1x_3(x_1 - x_3)^2 + 14,7x_2x_3(x_2 - x_3)^2 +$ $+ 7,3x_1^2x_2x_3 + 198,8x_1x_2^2x_3 + 93,4x_1x_2x_3^2.$

Таблица 1

Матрица планирования и результаты испытаний
на абразивный износ карбидных покрытий
на основе Cr–Ti–V

Состав активной				Относительная / Длина				
части смеси,			Обозна	износостой- / пути				
доли единицы				кость K_w / трения, м				
Cr_2O_3	TiO ₂	V_2O_5	чение у	CTARL V8				
(<i>x</i> ₁)	(x_2)	(x_3)						
1	0	0	\mathcal{Y}_1	2,3/4,9				
3/4	1/4	0	<i>Y</i> 1112	2,4/3,2				
1/2	1/2	0	<i>Y</i> ₁₂	4,3/11,8				
1/4	3/4	0	<i>Y</i> 1222	4,0/7,9				
0	1	0	\mathcal{Y}_2	1,1/1,0				
0	3/4	1/4	<i>Y</i> 2223	13,6/34,6				
0	1/2	1/2	<i>Y</i> ₂₃	6,6/16,3				
0	1/4	3/4	<i>Y</i> 2333	8,6/21,5				
0	0	1	<i>y</i> ₃	21,4/34,6				
1/4	0	3/4	<i>Y</i> 1333	38,7/35,7				
1/2	0	1/2	<i>Y</i> 13	1,5/2,0				
3/4	0	1/4	<i>Y</i> 1113	1,1/1,0				
1/2	1/4	1/4	<i>Y</i> ₁₁₂₃	4,5/11,8				
1/4	1/2	1/4	<i>Y</i> ₁₂₂₃	70,5/81,3				
1/4	1/4	1/2	<i>Y</i> ₁₂₃₃	6,8/30,4				
1/3	1/3	1/3	<i>Y</i> 123	33,3/79,1				
3/4	1/8	1/8	_	23,0/33,4				
1/8	3/4	1/8	_	12,8/33,7				
1/8	1/8	3/4	_	38,7/60,9				

В геометрической интерпретации полученная модель представлена на рис. 1а. На диаграмме видно, что в Cr-Ti-V системе выделяются две оптимальные области составов при соотношении активных компонентов в первой области: 5–30 % Cr_2O_3 , 45–70 % TiO_2 и 10–35 % V_2O_5 , где рост абразивной износостойкости

 K_w составляет 60 ± 20 раз, по сравнению с закаленной и низкоотпущенной сталью У8, во второй области: 0–10 % TiO₂, 5–25 % Cr₂O₃ и 75–95 % V₂O₅ – до 40 ± 15 раз. Однако из-за неоднородности фазового состава карбидных слоев имеет место также скачкообразное повышение износостойкости, достигающее K_w =

= 23,0 при концентрации основных компонентов 75 % Cr₂O₃ + 12,5 % TiO₂ + 12,5 % V₂O₅,

не предсказанное математической моделью (рис. 1а). Поэтому в дальнейшем такие точки на концентрационном треугольнике с экстремальными свойствами, не предсказанными моделью, решили условно выделять кружками.

а

Рис. 1. Зависимость абразивной износостойкости карбидных слоев на стали У8 от состава насыщающей смеси в системах на основе: а – Cr–Ti–V; б – Cr–Ti–Mn; режим XTO: T = 1100 °C, $\tau = 6$ ч; условия испытаний: p = 1 МПа,

v = 0,5 м/с, абразив – электрокорунд

Аналогичным образом были решены задачи по оптимизации микротвердости и износостойкости карбидных слоев на стали У8 в системах на основе Cr–Ti–V, Cr–Ti–Mn. Все полученные математические модели четвертого порядка были адекватными. На их основе были построены диаграммы «состав – свойство», приведенные на рис. 1–3. В результате выявлены оптимальные области порошковых смесей, в которых наблюдается экстремальное повышение микротвердости и износостойкости многокомпонентных карбидных покрытий.

По-видимому, такое повышение свойств оптимизированных карбидных слоев обусловлено:

1. Высоким содержанием в диффузионном слое карбидов, имеющих в силу своей физической природы высокие механические свойства, т. е. карбидов металлов IVA–VA групп периодической системы элементов.

Рис. 2. Зависимость стойкости карбидных слоев на стали У8 при сухом трении скольжения от состава насыщающей смеси в системах на основе: а – Cr–Ti–V; б – Cr–Ti–Mn; режим XTO: T = 1100 °C, $\tau = 6$ ч; условия испытаний: p = 1 МПа, v = 1 м/с, контртело трения – BK3

На основании подробного исследования фазового состава покрытий в карбидных системах на основе Cr–Ti–V, Cr–Ti–Mn установлено преобладание карбидов титана и ванадия (рис. 4, 7).

2. Наличием взаимной растворимости карбидов, входящих в состав многокомпонентных диффузионных слоев.

Для этого были рассчитаны периоды кристаллической решетки TiC для карбидных покрытий в системе Cr–Ti–V, которые имеют максимальные значения свойств. Результаты расчета параметров решетки карбида титана при съемке по точкам приведены в табл. 2. Расчет периода решетки TiC проводили по линии (422) для угла отражения $\theta = 61,5^{\circ}$.

Рис. 3. Изменение микротвердости карбидных слоев на стали У8 в зависимости от состава насыщающей смеси в системах на основе: a – Cr–Ti–V; б – Cr–Ti–Mn; режим XTO: T = 1100 °C, τ = 6 ч

Таблица 2

Результаты расчета параметров решетки карбида титана в многокомпонентных карбидных покрытиях в системе Cr–Ti–V

	Coc	гав см	еси,	Фазо					
Мо	доли	един	ицы	чи	Параметры				
л <u>∘</u> п/п	Cr ₂ O ₃	TiO ₂	V ₂ O ₅	Карбид ы хрома	Карбид	Карбид	решетки		
					ы ти-	ы	ТіС, нм		
					тана	ванадия			
1	-	0,75	0,25	-	2		0,43137		
2	0,25	0,5	0,25	11	4	I	0,43148		
3	0,25	0,25	0,5	2	4	2	0,43201		
4	0,33	0,33	0,33	8	6	4	0,43243		
5	0,75	0,125	0,125	11	2	_	0,43285		

TiC для Параметр решетки первого покрытия (75 % $TiO_2 +$ 25 % V_2O_5) соответствует максимальному периоду решетки Полученные TiC_{0.86} [7, 8]. результаты показывают, что наибольшее отклонение периода решетки ТіС от эталонного достигает ~0.01. При равновесной взаимной растворимости карбидов титана и ванадия это

изменение должно составить ~0,02, т. е. вдвое Проверка разброса точек больше [7]. ОТ эталонного показала, что изменение параметров решетки TiC карбидных слоев ошибки, находится В пределах т. e. значительной взаимной растворимости карбидов титана и ванадия не наблюдается.

Рис. 4. Распределение элементов в диффузионном слое на стали У8 после хромотитанованадирования при T == 1100 °C, $\tau = 6$ ч (×240). Состав насыщающих смесей по основным компонентам: а – 75 % Cr₂O₃ + 12,5 % TiO₂ + + 12,5 % V₂O₅; 6 – 25 % Cr₂O₃ + 50 % TiO₂ + 25 % V₂O₅

Однако экстремальное повышение свойств может быть обусловлено не только упрочнением металлической подрешетки, но и sp^3 стабилизацией дополнительной конфигураций валентных электронов атомов углерода, которая достигается при содержании легирующих добавок в размере 2-10 ат. % [7, 9]. Действительно наличие малого процента примесных атомов в количестве 5-10 ат. % (в данном случае ванадия), которое не выявляется рентгеновским фазовым анализом, в то же время подтверждается данными микрорентгеноспектрального анализа (рис. 4).

Доказательством взаимной растворимости карбидов титана и ванадия является также однородность структуры образуемой

карбидной фазы, которая визуально обнаруживается при ее металлографическом исследовании при увеличении в 10000 раз (рис. 5).

Рис. 5. Микроструктура карбидных слоев на стали У8 после хромотитанованадирования при T = 1100 °С и $\tau = 6$ ч (×10000); составы насыщающих смесей по основным компонентам: а – 25 % Cr₂O₃ + 50 % TiO₂ + 25 % V₂O₅; б – 75 % Cr₂O₃ + 12,5 % TiO₂ + I2,5 % V₂O₅

3. Высокой текстурованностью карбидов, образованных при многокомпонентном диффузионном насыщении с участием ванадия.

Из приведенных данных (табл. 3) следует, что повышение степени текстурованности кар-

бида ванадия V₂C (как и увеличение количества карбидов ванадия в покрытии) сопровождается возрастанием микротвердости оптимизированных хромотитанованадиевых карбидных слоев и соответствует распределению этих показателей в ряду:

СЧ 20 (17500 МПа) → 7Х3 (29000 МПа) → → XI2 (32800 МПа).

4. Повышение износостойкости обусловлено ростом толщины карбидных покрытий. Утверждение имеет силу, если рассматриваются покрытия на основе карбидов одного типа.

Структуры карбидных слоев, полученных в оптимальных насыщающих средах, представлены на рис. 6.

Кинетика формирования диффузионных многокомпонентных слоев лимитируется скоростью диффузионного массопереноса в насыщаемом сплаве И карбидной фазе, в связи с чем зависимость толщины слоя от времени близка к параболической, а ОТ температуры к экспоненциальной.

Таблица 3

No	θ	$d_{\text{опыт}}$	d_{reop}	I _{reop}	Фаза	HKL	Интенсивность линий I _{опыт} , мм		
л <u>⊍</u> линии							Чугун	Сталь	Сталь
							СЧ20	7X3	X12
1	16,30	2,7470	2,748	25	Cr ₃ C ₂	011	5	3	3
2	18,15	2,475	2,498	20	α -V ₂ C	021	8	10	10
3	18,80	2,392	2,400	100	VC	111	33	160	25
4	19,70	2,287	2,288	35	α -V ₂ C	200	200	175	600
5	20,60	2,191	2,193	100	α -V ₂ C	121	10	5	7
6	21,75	2,080	2,070	100	VC	200	27	13	13
7	22,40	2,023	1,993	20	Cr ₃ C ₂	204	7	7	7
8	28,80	1,600	1,620	10	Cr ₃ C ₂	214	15	10	5
9	31,70	1,467	1,469	50	VC	220	10	5	5
10	34,10	1,375	1,376	5	Cr ₃ C ₂	401	24	5	-
11	40,30	1,192	1,199	10	VC	222	10	15	_
12	42,30	1,145	1,144	5	α -V ₂ C	400	22	22	70
13	53,90	0,954	0,952	5	VC	331	5	5	5
Σνς								198	48
ΣV ₂ C							240	212	687
							51	25	15
$\frac{\Sigma VC + \Sigma V_2 C}{\Sigma VC + \Sigma V_2 C + \Sigma C r_3 C_2}$							0,86	0,94	0,98

Результаты рентгеноструктурного анализа карбидных покрытий, полученных в насыщающей смеси на основе 12,5 % Cr₂O₃ + 12,5 % TiO₂ + 75% V₂O₅

Металлургия. Металлообработка. Машиностроение

Puc. 6. Микроструктуры диффузионных слоев на стали V8 после: а – хромованадирования; б – титаномарганцирования; в, г – хромотитанованадирования; д, е – хромотитаномарганцирования; при T = 1100 °C и $\tau = 6$ ч (×240). Составы насыщающих смесей по основным компонентам: a – 15 % Cr₂O₃ + 85 % V₂O₅; б – 25 % TiO₂ + 75 % MnO₂; в – 75 % Cr₂O₃ + 12,5 % TiO₂ + +12,5 % V₂O₅; Γ – 25 % Cr₂O₃ + 50 % TiO₂ + 25 % V₂O₅; π – 75 % Cr₂O₃ + 12,5 % MnO₂; e – 25 % Cr₂O₃ + 50 % TiO₂ + 25 % MnO₂

Рис. 7. Распределение элементов в диффузионном слое на стали У8 после титаномарганцирования при T = 1100 °C, $\tau = 6$ ч (×240); состав насыщающей смеси по основным компонентам: 25 % TiO₂ + 75 % MnO₂

Однако отмечен интенсивный рост Ti–Mn карбидных покрытий, полученных в смесях с преобладанием MnO_2 (рис. 6б). Как отмечалось в ряде работ [10–12], такой рост карбидных слоев свойствен либо для случая реакционной диффузии, либо для случая образования на поверхности жидкометаллической фазы.

Увеличение вклада карбидообразующих элементов и углерода основы в процесс образования

Ті-Мп карбидных покрытий может быть связано с адсорбционными процессами, не отличающимися по своей сущности ОТ Кроме того, создание каталитических [11]. жидкометаллической подложки на основе алюминия xaрактеризуется тем, что адсорбционные И термодинамические процессы более энергетически выгодны [12-14]. Присутствие алюминия почти в чистом виде, который участвует в образовании жидкометаллической фазы. доказывается данными микрорентгеноспектрального анализа (рис. 7) и состоянием оплавленной поверхности начальный период формирования карбидного слоя.

Промышленные испытания подтвердили эффективность оптимизированных многокомпонентных карбидных слоев. Эксплуатационная стойкость матриц лля холодной высадки, форсунок для малярных работ и направляющих для навивки пружин с карбидными покрытиями, полученными методом XTO, в оптимальных порошковых Cr-Ті-V и Cr-Ті-Мп смесях [15, 16], повысилась в 2-10 раз по сравнению со стандартным инструментом.

выводы

1. Проведена оптимизация составов насыщающих смесей по микротвердости и износостойкости в условиях абразивного изнашивания и сухого трения скольжения карбидных слоев на стали У8 для двух- и трехкомпонентных систем на основе Cr–Ti–V и Cr–Ti–Mn.

Выбраны оптимальные составы насыщающих смесей, обеспечивающие при химико-термической обработке получение карбидных слоев с максимальной износостойкостью. В peзультате оптимизации процессов многокомпонентных износостойкость карбидных покрытий в системах Cr-Ti-V и Cr-Ті-Мп повысилась в 30-70 раз, а по сравнению с хромированием – в 10-30 раз.

2. Показано, что экстремальное повышение микротвердости и износостойкости многокомпонентных карбидных слоев обусловлено следующими причинами:

• преобладанием в диффузионных слоях карбидов с наиболее высокими показателями механических свойств – карбидов титана и ванадия;

• наличием взаимной растворимости карбидов, входящих в состав слоев (в пределах 5–10%);

• высокой степенью текстурованности карбидов, образованных на стали при многокомпонентном диффузионном насыщении с участием ванадия.

Кинетика 3. формирования многокомпонентных карбидных слоев носит общеизвестный характер: зависимость времени толщины слоя от близка к параболической, а от температуры к экспоненциальной. Аномально высокая скорость роста Ti–Mn карбидных слоев объясняется образованием на поверхности стали жидкометаллической фазы на основе алюминия.

ЛИТЕРАТУРА

1. **Новик, Ф.** С. Математические методы планирования экспериментов в металловедении. Раздел IV / Ф. С. Но-вик. – М.: МиСИС, 1971. – 148 с.

2. Некоторые физико-механические свойства сплавов ZrC-NbC-MoC_{1-x} / В. Д. Функе [и др.] // Порошковая металлургия. – 1977. – № 12. – С. 76–82.

3. Шматов, А. А. Исследование свойств многокомпонентных карбидных слоев методом симплексных решеток // Тез. докл. всесоюзн. науч.-техн. конф. / А. А. Шматов. – М., 1986. – С. 181–183.

4. **Ворошнин, Л. Г.** Исследование износостойкости карбидных покрытий системы методом симплексных решеток / Л. Г. Ворошнин, А. А. Шматов // Доклады АН БССР. – 1983. – № 3. – С. 238–239.

5. Шматов, А. А. Исследование и оптимизация процессов многокомпонентного насыщения сталей и чугуна карбидообразующими элементами: дис. ... канд. техн. наук / А. А. Шматов. – Минск, 1983. – 222 с.

6. **Самсонов, Г. В.** Физическое материаловедение карбидов / Г. В. Самсонов, Г. Ш. Упадхая, В. С. Нешпор. – Киев: Наукова думка, 1974. – 456 с.

7. Самсонов, Г. В. Некоторые закономерности начальной стадии реакционной диффузии / Г. В. Самсонов, Г. Л. Жунковский // Защитные покрытия на металлах. – 1973. – Вып. 7. – С. 21–33.

8. Диффузионные карбидные покрытия / В. Ф. Лоскутов [и др.]. <u>–</u>Киев: Техника, 1991. <u>–</u>168 с.

9. Хижняк, В. Г. Разработка физико-химических и технологических основ нанесения на поверхность сталей и твердых сплавов двухкомпонентных покрытий на основе карбидов переходных металлов для повышения служебных характеристик изделий: автореф. дис. ... докт. техн. наук / В. Г. Хижняк. – Киев, 1998. – 24 с.

10. Структура, электронное строение и механические свойства покрытий на основе карбида титана на стали У10А / В. Г. Хижняк [и др.] // Наук. вісті Нац. техн. ун-ту Украіни. _ 2001. _ № 3. _ С. 84_90.

11. **Металловедение.** Термическая и химикотермическая обработка сплавов: сб. науч. тр. / Моск. гос. техн. ун-т. – М.: Изд-во МГТУ, 2003. – 246 с.

12. Лоскутова, Т. В. Комплексное насыщение углеродистых сталей и твердых сплавов ниобием и хромом: автореф. дис. ... канд. техн. наук / Т. В. Лоскутова. – Киев, 2004. – 20 с.

13. Пантелеенко, Ф. И. Исследование механизма формирования, строения и свойств карбидных покрытий на основе хрома на предварительно цинкованных сталях: дис. ... канд. техн. наук / Ф. И. Пантелеенко. – Минск, 1977. – 263 с.

14. **Попов, В. Е.** Кристаллизация тугоплавких карбидов из растворов в металлических расплавах и получение композиционных материалов: дис. ... канд. техн. наук. – Л., 1976. – 160 с.

15. Состав для комплексного насыщения изделий: а. с. 1046328 СССР / Л. Г. Ворошнин, Г. В. Борисенок, А. А. Шматов [и др.] // Б. И. – 1983. – № 37, С23С, 9/02 от 3.06.1982.

16. Состав для комплексного насыщения стальных изделий: а. с. 1477780 СССР / Л. Г. Ворошнин, А. А. Шматов, Б. Б. Хина [и др.] // Бюл. изобр. – 1989. – № 17. – С23С, 10/52 от 12.10.1987.

Поступила 17.07.2007