- 3.5.1. Подготовка шихты (*X*3.5.1, *Y*3.5.1).
- 3.5.2. Выплавка стали в ЭСПЦ-1 (*X*3.5.2, *Y*3.5.2).
- 3.5.3. Выплавка стали в ЭСПЦ-2 (*X*3.5.3, *Y*3.5.3).
- 3.5.4. Разливка стали в ЭСПЦ-1 (*X*3.5.4, *Y*3.5.4).
- 3.5.5. Разливка стали в ЭСПЦ-2 (*X*3.5.5, *Y*3.5.5).
- 3.6.1. Производство и поставка проката стана 850 (*X*3.6.1, *Y*3.6.1).

Для процесса 3.5.1. «Подготовка шихты» установлено, что наиболее значимыми факторами являются лишь показатели шихты, уже подготовленной в результате выполнения данного процесса, поэтому в расчет принимались только параметры выхода процесса.

Анализ выявленных в процессе построения функциональной модели сети процессов ведется «послойно». По мере выявления значимости процессов того или иного уровня детализации, его декомпозиция продолжается, в результате чего «порождаются» уточняющие функции по-

терь, анализ которых позволит выявить источники несоответствий и выработать эффективные корректирующие и предупреждающие действия.

вывод

В результате проделанной работы получена методика, позволяющая провести анализ существующей системы обеспечения качества производства непрерывнолитой и катанной трубной заготовки в условиях РУП «БМЗ», что позволит значительно снизить потери качества, в том числе и при освоении новой для РУП «БМЗ» продукции — непрерывнолитой трубной заготовки Ø140, 200 мм и катанной трубной заготовки Ø160 мм. Выпуск данной продукции необходим для успешного функционирования строящегося трубопрокатного комплекса РУП «БМЗ».

Поступила 6.12.2006

УДК 666.3.022.41:621.926.3/.9

ОБОСНОВАНИЕ И РЕАЛИЗАЦИЯ МНОГООПЕРАЦИОННОГО ИЗМЕЛЬЧЕНИЯ В ПРОХОДНОЙ МЕЛЬНИЦЕ ЦЕНТРОБЕЖНОГО ТИПА

Докт. техн. наук, проф. ЛОЖЕЧНИКОВ Е. Б., асп. ГАВРИЛЕНЯ А. К.

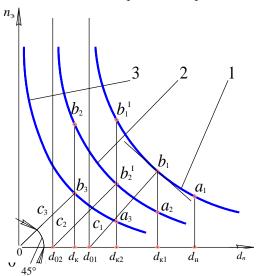
Белорусский национальный технический университет

Для улучшения и придания материалам потребительских и технологических свойств широко используются операции их измельчения. Наиболее распространены способы измельчения силовым воздействием на материал, в результате которого происходят его деформация и разрушение на мелкие куски, гранулы и порошок (связносыпучая среда с размером частиц не более 1 мм) [1–3]. Разнообразие способов измельчения обусловлено различием свойств обрабатываемого материала, исходными $d_{\rm H}$ и конечными $d_{\rm K}$ размерами его частиц и другими требованиями к качеству продукции. Сложность протекающих при измельчении физико-

химических процессов предопределила использование различных подходов и моделей их теоретического исследования, обобщенные результаты которых позволяют принимать обоснованные решения при проектировании и выборе конструкции измельчающих устройств.

В результате силового взаимодействия с размольными телами и между собой частицы измельчаемого материала испытывают упругую, а затем пластическую деформацию до разрушения на более мелкие частицы. Многократность этого взаимодействия обусловливает наклеп, образование и развитие в материале частиц микро- и макродефектов, что приводит

к их разрушению при контактных и внутренних напряжениях, меньших предела прочности σ_S . Удельная энергоемкость процесса измельчения определяется при этом материалом частиц, состоянием их поверхности, рациональностью способа и конструкции размольного устройства, степенью измельчения (отношения размеров частиц до и после измельчения) и многими другими факторами. С уменьшением размеров частиц удельная энергоемкость их измельчения возрастает, и по достижении размеров d_0 , минимальных для конкретных материалов, способов и условий процесса, измельчение прекращается. Вследствие насыщения избыточной энергией в высокодисперсных порошках с размерами частиц, близкими к d_0 , возможен обратный процесс - гранулирование частиц, а в случае смесей разных по составу порошков - химическое взаимодействие с образованием твердых растворов и соединений.


Для уменьшения энергозатрат и повышения дисперсности продуктов измельчения эффективно использование последовательно изменяющихся способов и средств размола, например сначала ударного, а затем истирающераздавливающего действий. Анализ результатов теоретических и экспериментальных исследований дает основание моделировать зависимость удельной энергоемкости измельчения n_3 от размеров частиц порошка $d_{\rm K}$ дробной рациональной функцией

$$n_3(d_{\kappa} - d_0) = E_3 = 0.5C^2,$$
 (1)

где E_3 — параметр, зависящий от свойств и состояния материала, способа, режима и условий процесса измельчения.

Так, для измельчения порошка с начального размера частиц $d_{\rm H}$ до размера $d_{\rm K}$ (рис. 1) следует, что по способу, описываемому кривой 1, невозможно измельчение материала до размера частиц d_{κ} . Для достижения требуемой степени размола $d_{\rm H}/d_{\rm K}$ и размера частиц $d_{\rm K}$ необходимо использовать измельчитель с другим механизмом и режимом силового воздействия на материал, например, описываемый кривой 2. При этом, с точки зрения возможностей и удельных энергозатрат, целесообразно по способу 1 проводить измельчение до размеров частиц $\sim d_{\kappa l}$, а затем – по способу, описываемому кривой 2, обеспечивающему возможность получения порошка требуемой дисперсности d_{κ} с общими удельными затратами энергии, равными сумме проекций дуг a_1b_1 и a_2b_2 на ось ординат. Из рис. 1 очевидно, что удельные энергозатраты

можно уменьшить при использовании измельчителя, описываемого кривой 3. При этом во втором измельчителе целесообразно проводить измельчение до размеров $d_{\kappa 2}$ частиц. Тогда общие удельные энергозатраты будут равны сумме проекций на ось ординат дуг a_1b_1 , a_2b_2 и a_3b_3 , меньшей предыдущего варианта, а, следовательно, с меньшими затратами энергии.

Puc. 1. Зависимость удельной энергии измельчения от размера частиц материала

Результаты многочисленных экспериментов и практика измельчения различных материалов в производственных масштабах [1-6] свидетельствуют о высокой эффективности обработки кусковых и сыпучих материалов в валковых мельницах. Измельчение прокаткой в валках вследствие самоорганизации нагружения, деформации, уплотнения и разрушения частиц в толстом слое прокатываемого порошка обеспечивает равномерный и достаточно тонкий размол (~70 % частиц кварцевого песка размером менее 0,07 мм за проход) при почти в два раза меньших энергозатратах, чем, например, в шаровых барабанных мельницах. Измельчение в валковых мельницах достигается за счет такого внешнего силового воздействия, при котором происходят структурная деформация порошка, условие которой определяется выражением [4, 6]

$$\sigma_1 - \sigma_3 = \sigma + 2c \cos \varphi, \tag{2}$$

а также пластическая деформация и разрушение материала составляющих его частиц [7]

$$\sigma_{MI} - \sigma_{M3} = k_{\sigma} \beta \sigma_{S}, \tag{3}$$

при контактных с валками напряжениях, достигающих в нейтральном сечении величины [4]

$$\sigma_1 = \sigma(1 + \sin \varphi) - \sigma_C, \tag{4}$$

где σ_1 , σ_3 и $\sigma_{\rm M1}$, $\sigma_{\rm M3}$ — большие и меньшие главные напряжения соответственно в обрабатываемой давлением массе порошка и материале составляющих его частиц; $\sigma=0,5(\sigma_1+\sigma_3)$ — среднее напряжение; ϕ и c — угол межчастичного трения и сцепление частиц; $\sigma_c=c{\rm ctg}\phi$ — напряжение разрыва контактов между частицами; $\beta=1-1,15$ — коэффициент, учитывающий влияние среднего главного напряжения, принимаемый $\beta=1$; $k_\sigma=\sigma_b/\sigma_S$ — коэффициент, учитывающий деформируемость материала частиц (для хрупких $k_\sigma\approx 1$).

Поскольку структурная деформация порошка и пластическая деформация материала составляющих его частиц возможны при равенстве левых, а следовательно, и правых частей (2) и (3), их совместным решением определяется среднее напряжение

$$\sigma = \frac{(\sigma_s - 2c\cos\phi)\upsilon_\sigma}{2\sin\phi},\tag{5}$$

где υ_{σ} – относительная плотность порошка, которая может быть определена экспериментально по диаграмме прессования порошка и расчетом по формуле [4] $\upsilon_{\sigma} = \upsilon_{\rm H} + k \sigma_{\rm I}^n$; $\upsilon_{\rm H}$ – относительная насыпная плотность; k и n – параметры, зависящие от свойств и материала порошка; величина υ_{σ} учитывает реальную площадь сечения пористого тела (порошка).

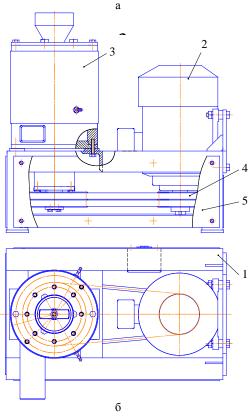
Вследствие этого для раздавливающего измельчения в валках необходимы высокие контактные с валками напряжения, определяемые по (4) и (5), а по условиям захвата материала валками и прокатки его в толстом слое – валки большого диаметра (600–1000 мм). Все это предопределяет громоздкость конструкций валковых мельниц, используемых в основном в крупнотоннажных производствах для грубого или избирательного измельчения сырьевых материалов и производственных отходов [1, 4–6].

Близкие к валковым по характеру воздействия на измельчаемый материал ролико-кольцевые мельницы [1, 8] вследствие однонаправленной кривизны размольных тел – кольца и расположенных в нем роликов – обеспечивают захват материала – кусков или слоя порошка, не допустимых по условию их обжатия и предельного уплотнения в валках. Во избежание заклинивания прижим роликов к кольцу и измельчаемому материалу осуществляют через упругие элементы (пружинный механизм) или

центробежными силами выполненных в виде втулок размольных тел, свободно насаженных на оси вращающегося в кольце ротора. Сравнительно невысокие технологические усилия при этом компенсируются многократным воздействием размольных тел на материал, позволяя получать высокодисперсные порошки из твердых и сверхтвердых материалов.

Очевидно, что повышения интенсивности измельчения в ролико-кольцевых мельницах можно достигнуть предварительной обработкой материала, вызывающей не только его измельчение и уменьшение поля рассеяния размеров его частиц, но и снижение их прочности и деформационной способности за счет наклепа и образования в них микро- и макродефектов, облегчающих измельчение частиц при дальнейшей обработке. Контрастным раздавливающему механизму разрушения и измельчения представляется ударное воздействие размольных тел, реализуемое в дезинтеграторах и дисмембраторах [1, 9]. Силу P и энергию удара, воспринимаемую частицей массой т, можно выразить через приобретенную или измененную скорость у движения частицы и ее деформацию Δd

$$P\Delta d = \frac{mv^2}{2}. (6)$$

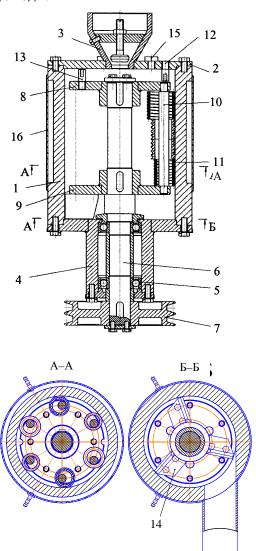

Приняв для упрощения форму частицы в виде куба с размерами сторон d, обозначив ее плотность ρ , силу $P = \sigma_b d^2$, а массу частиц $m = \rho d^3$, после подстановок и преобразований выражения (6) получим значение скорости, вызывающей ее деформацию Δd и разрушение:

$$v = \sqrt{\frac{2\sigma_b \Delta d}{\rho d}},\tag{7}$$

при импульсе силы $Pt = \frac{\sigma_b d^2 \Delta d}{V}$.

Поскольку скорость в данном случае может быть принята в качестве показателя условия разрушения, из (7) следует, что с увеличением прочности и деформационной способности материала частиц (с уменьшением k_{σ} до 1 Δd стремится к нулю) удельная энергия их ударного измельчения возрастает, а с увеличением размеров и плотности частиц — уменьшается. Из чего следует рациональность последовательности операций измельчения сначала ударным воздействием, например по принципу дисмембратора, а затем — раздавливающим с элементами ударно-истирающего, характерного для ролико-кольцевых мельниц центробежного

типа. Для реализации такой технологической схемы в одном устройстве разработана конструкция мельницы, общий вид и снимок которой представлены на рис. 2.



Puc. 2. a - общий вид; б - фотоснимок мельницы RTM4

Мельница состоит из сварной рамы 1, на которой установлены электродвигатель 2 и роторная головка 3 со шкивами ременной передачи 4. Рама облицована панелями 5, на внутренней поверхности одной из них установлен пульт управления двигателем.

На рис. 3 представлен чертеж роторной головки, состоящей из корпуса 1, закрытого свер-

ху фланцем 2 с дозирующей материал воронкой 3, снизу – фланцем 4 со ступицей и подшипниками 5. В корпусе соосно с ним установлен ротор, на консольных шейках вала 6 которого закреплены шкив 7 и два диска 8 и 9 со шпильками 10 между ними. На шпильках свободно насажены размольные тела, выполненные в виде спиральных пружин и втулок 11. На верхних фланце 2 и диске 8 по концентрическим окружностям установлены пальцы 12 и 13. К нижнему диску прикреплены лопатки 14, на уровне которых в корпусе выполнено отверстие с патрубком. В верхнем фланце 2 выполнены предназначенные для поступления в корпус воздуха и подачи технологической жидкости отверстия, заглушенные болтом 15. Выполненная на корпусе проточка закрыта кожухом 16 со штуцерами для подачи и удаления охлаждающей корпус воды.

Puc. 3. Роторная головка мельницы RTM4

Мельница работает следующим образом. При включенном электродвигателе и вращающемся роторе через дозирующую воронку непрерывно подается подлежащий размолу материал, который верхним диском 8 отбрасывается к внутренней поверхности корпуса, при этом попадает под ударное воздействие пальцев, вызывающее разрушение и дробление частиц. Создаваемый лопатками поток воздуха вовлекает обрабатываемый материал в зону действия размольных тел - пружин и втулок. При этом материал перемещается по винтовой спирали вниз к выходному отверстию с патрубком. подвергаясь многократному истирающему воздействию со стороны пружин и втулок, которые центробежными и действующими со стороны шпильки силами прижимаются к рабочей поверхности корпуса. Продукты размола создаваемым лопатками потоком воздуха удаляются через отверстие и патрубок в систему его улавливания. Охлаждение корпуса водой и размольных тел принудительным потоком воздуха предотвращает их нагрев до температур реакции обрабатываемого материала с окружающей средой.

Интенсивность и степень размола регулируются подбором количества, размеров и массы размольных тел (пружин и втулок).

Для определения технических возможностей (табл. 1) разработанной мельницы проведены эксперименты измельчения в ней разных материалов. Измельчение проводили при загрузке ротора размольными телами – пружинами (15 шт.) и втулками (12 шт.) общим весом 2,5 кг и без них (измельчение только пальцами

верхних диска и фланца). Подачу материала осуществляли непрерывно через дозирующую воронку, обеспечивающую производительность около 30 кг/ч. Энергоемкость процесса определяли ваттметром.

В табл. 2 приведены результаты измельчения за один проход сверхтвердых порошков $NiCr - TiC - Cr_3C_2$, бутылочного стекла и кварцевого песка. На первом этапе измельчения пальцами (по схеме дисмембратора) происходит дробление преимущественно крупных частиц стекла и в меньшей степени - более прочного кварцевого песка. При полной загрузке размольными телами почти 50 % порошков карбидов и стекла после первого прохода имеют размер частиц менее 0,05 мм, а песка – 0,1 мм. Визуальный (с помощью инструментального микроскопа) анализ показал, что фракции с размерами частиц менее 0,05 мм в значительной части состоят из частиц размером от 20 до 4-6 мкм. Второй и третий проходы измельчения приводят к увеличению за один проход высокодисперсных составляющих (менее 0,05 мм) на 10–15 %. О высокой поверхностной активности продуктов измельчения свидетельствуют – значительное (на 70-80 %) уменьшение их насыпной плотности и увеличение угла естественного откоса при полной потере текучести.

Мощность привода мельницы на холостом ходу составляет \sim 1,2 кВт, под нагрузкой – 1,7–1,8 кВт (один проход). Расчеты показали удельную энергоемкость размола, составляющую 36–40 кВт·ч/т.

Таблица 1

Техническая характеристика мельницы RTM4

Назначение	Измельчение мелкокусковых и сыпучих преимущественно твердых и сверх- твердых материалов					
Тип	Ролико-кольцевая центробежного типа с входным дисмембратором, вентилируемая, с вертикальным положением ротора					
Размер частиц продуктов размола, мм	0,2–0,05 и менее (в зависимости от свойств и размера частиц исходного продукта, набора размольных тел и производительности)					
Подача и выход материала	Непрерывная через шиберный питатель и выходной патрубок					
Производительность, кг/ч	До 40 (в зависимости от параметров процесса и степени размола)					
Частота вращения ротора, об/мин (c ⁻¹)	954 (15,9)					
Привод:	Электродвигатель					
тип	4A90L4Y3;					
мощность, кВт	2,2;					
частота вращения ротора, об/мин	1450					
Габаритные размеры, мм:						
длина	525;					
ширина	356;					
высота	524					
Масса, кг	65					

Вестник БНТУ, № 2, 2007 47

Результаты экспериментов по размолу в мельнице RTM4

				NiCr – Ti	$C - Cr_3C_2$						
Размер фракции, мм	-0,05	-0,1 + + 0,05	-0,16 + + 0,1	-0,2 + + 0,16	-0,315 + + 0,2	-0,63 + + 0,315	-1 + 0,63	-1,6+1	-2,5+1,6	+2,5	
Исходный материал											
Содержание, %	1	1,4	1,3	5,9	53,6	26,2	6,3	2,6	1,2	0,8	
После размола											
Содержание, %	47,5	45,2	5,6	0,7	0,8	0,2	0	0	0	0	
				Кварцеві	ый песок						
Исходный материал											
Содержание, %	0,3	1,3	5,1	6,3	30,1	44,0	9,8	2,5	0,3	0,3	
После размола											
Содержание, %	29,2	25,1	17,3	9,5	16,2	2,7	0	0	0	0	
Без размольных колец											
Содержание, %	2,5	5,3	8,9	9,5	33,9	29,4	8,1	2,1	0,2	0,1	
Бутылочное стекло											
				Исходный	і материал						
Размер фракции, мм				-10,0 +	+ 2,5						
После размола											
Содержание, %	48,8	31,4	12,3	3,0	2,6	0,3	0,2	0,2	0,2	1	
Без размольных колец											
Содержание, %	10,1	10,7	6,2	3,9	13,3	22,0	17,7	11,7	2,4	2,0	

При вращении ротора без размольных пружин и втулок мощность привода составляла \sim 0,3 кВт. При подаче в мельницу кварцевого песка она увеличилась до 0,4 кВт, а бутылочного стекла — 0,5 кВт.

Продукты измельчения, приведенные в табл. 2, и других составов успешно апробированы в качестве присадок в производстве износостойких красителей и полимеров, в частности при модификации их в кремнийорганические соединения.

выводы

- 1. Предложены математические модели условий измельчения материалов и оценки его удельных энергозатрат, на основе которых обоснована эффективность многооперационного измельчения, последовательно выполняемого разными способами силового воздействия размольных тел на материал.
- 2. Разработана многооперационная проходная мельница центробежного типа, обеспечивающая тонкое измельчение материалов при сравнительно низких удельных энергозатратах.

ЛИТЕРАТУРА

- 1. Сиденко, П. Л. Измельчение в химической промышленности / П. Л. Сиденко. М.: Химия, 1968. 382 с.
- 2. **Серго, Е. Е.** Дробление, измельчение и грохочение полезных ископаемых / Е. Е. Серго. М.: Недра, 1985. 322 с.
- 3. **Авакумов, Е. Г.** Механические методы активации химических процессов / Е. Г. Авакумов. Новосибирск: Наука, 1986. 208 с.
- 4. **Ложечников**, **Е. Б.** Прокатка в порошковой металлургии / Е. Б. Ложечников. М.: Металлургия, 1987. 185 с.
- 5. **Ложечников, Е. Б.** Переработка промышленных отходов в валковых мельницах / Е. Б. Ложечников, А. В. Бусел // Ресурсосберегающие и экологически чистые технологии. Гродно, 1995. Т. 1. С. 165–170.
- 6. **Ложечников**, **Е. Б.** Механика измельчения прокатываемых в толстом слое материалов / Е. Б. Ложечников, А. К. Гавриленя // Вестник БНТУ. − 2006. − № 6. − С. 16–21.
- 7. **Губкин, С. И.** Теория обработки металлов давлением / С. И. Губкин. М.: Металлургиздат, 1947. 532 с.
- 8. **Ложечников, Е. Б.** Технология размола материалов в ролико-кольцевой мельнице центробежного типа / Е. Б. Ложечников, Е. М. Дубовская // Материалы, технологии, инструменты. 1999. № 1. С. 79–81.
- 9. **Гарабажиу**, **А. А.** Физическое моделирование процессов измельчения и классификации сыпучих материалов в роторно-центробежной мельнице / А. А. Гарабажиу, В. Ю. Мурог // Химическая промышленность. − 2004. − № 2. − С. 36–45.

Поступила 10.01.2007