РАСЧЕТ И ИССЛЕДОВАНИЕ АНАСТИГМАТИЧЕСКОЙ ЗЕРКАЛЬНОЙ СИСТЕМЫ

Канд. техн. наук АРТЮХИНА Н. К., асп. ПРИСЛОПСКИЙ С. Я.

Белорусский национальный технический университет

Широкое применение в оптическом приборостроении, особенно в ультрафиолетовой и инфракрасной областях спектра, находят зеркальные системы [1]. Они позволяют сократить габариты, уменьшить массу прибора при сохранении высокой входной апертуры. Кроме того, зеркала больших размеров значительно проще и дешевле в изготовлении, чем линзы такого же диаметра. Весьма актуальна задача улучшения качества изображения при разработке зеркальной оптики, поэтому представляет практический интерес расчет трехзеркальных систем, обладающих хорошими габаритными соотношениями и обеспечивающих апланатическую и анастигматическую коррекцию аберраций [2, 3]. В объективах с высокой и синтезированной апертурой часто требуются схемы двухступенчатой оптики с афокальной системой (насадкой) к фокусирующему компоненту [4, 5], где первая ступень – зеркальная афокальная система с видимым увеличением Г_{т.с}, а вторая - объектив с фокусным расстоянием f_{dok of}, и эквивалентное фокусное расстояние $f'_{\text{сист}} = \Gamma_{\text{т.с}} f'_{\text{фок.об}}.$

В области аберраций третьего порядка можно доказать, что конструктивное выполнение афокальной системы, образованной классическим зеркальным объективом и одиночным параболическим зеркалом, используемыми в качестве окуляра, обеспечивает исправление четырех основных аберраций. В [6] рассмотрена трехзеркальная композиция с классическим объективом Кассегрена и вогнутым параболическим зеркалом. Зачастую удобно в зеркальных системах иметь промежуточное изображение [7, 8], при наличии которого проще решается задача защиты плоскости изображения от постороннего света. В настоящей работе проведены расчет и исследование системы, первое и второе зеркала которой образуют классический объектив Грегори. За счет диафрагмы (ее роль выполняет отверстие в третьем зеркале) устраняются все возможные паразитные лучи [9].

На рис. 1 представлена ее оптическая схема, которая включает в себя три силовых отражающих компонента с совмещенными оптическими осями. Первый компонент – вогнутое параболическое зеркало 1; второй компонент выполнен в виде вогнутой эллиптической отражающей поверхности 2, передний геометрический фокус которой совмещен с фокусом первого компонента; третий отражающий компонент выполнен в виде выпуклой параболической поверхности 3, фокус которой совпадает с задним фокусом эллиптического зеркала.

Рис. 1. Схема трехзеркальной афокальной системы

Исходными данными для проведения габаритного расчета рассматриваемой афокальной системы являются ее видимое увеличение Г, относительное отверстие зеркального объектива Грегори D: $f'_{1,2}$ и диаметр входного зрачка D, определяемый оправой главного (первого) зеркала. Кроме этого, необходимо задавать условия нормировки для первого параксиального луча, идущего из осевой точки предмета на край входного зрачка:

$$\alpha_1 = \alpha_4 = 0; \ \alpha_3 = -1;$$

 $n_1 = n_3 = 1; \ n_2 = n_4 = -1;$ (1)
 $h_1 = 1, \ f'_{1,2} = 1.$

В результате расчета углов α_s и высот h_s луча, ход которого показан на рис. 1, получим сводку формул для определения радиусов зеркальных поверхностей r_s и осевых расстояний d_s между зеркалами (все обозначения приведены в [10]):

$$d_{1} = \frac{1 - h_{2}}{\alpha_{2}}; \quad d_{2} = \frac{h_{2} - h_{3}}{\alpha_{3}} = \frac{1 - \Gamma h_{2}}{\Gamma};$$
$$r_{1} = \frac{2}{\alpha_{2}}; \quad r_{2} = \frac{2h_{2}}{\alpha_{2} + \alpha_{3}}; \quad r_{3} = \frac{2h_{3}}{\alpha_{3} + \alpha_{4}}. \quad (2)$$

В рассматриваемой системе, кроме апланатической и анастигматической коррекции аберраций, можно осуществить план-коррекцию. Для этого необходимо выполнить условие Петцваля

$$\sum_{s=1}^{3} \frac{1}{r_s} \left(\frac{1}{n_{s+1}} - \frac{1}{n_s} \right) = 0, \qquad (3)$$

где n_s — показатели преломления оптических сред; s — номер зеркальной поверхности (все четные показатели будут равны -1, а нечетные равны 1).

Коэффициент центрального экранирования є в объективе Грегори определяется высотой нулевого луча на втором зеркале

$$\varepsilon = h_2 = \frac{1 + \alpha_2}{\alpha_2 - \Gamma} \,. \tag{4}$$

В общем случае третье зеркало может занимать различное положение относительно первого (главного) зеркала. Введем параметр δ , определяющий положение третьего зеркала относительно вершины первого зеркала, тогда в (2) и (3) необходимо учитывать дополнительное конструктивное условие $d_2 = -(d_1 - \delta)$. При расчете модификаций, когда оно расположено не в фокусе первого, а на некотором расстоянии δ от него, формула (4) усложняется и имеет следующий вид:

$$h_2 = \frac{1 + \alpha_2 (1 - \delta \Gamma)}{\Gamma (1 + \alpha_2)}.$$
 (5)

Для определения угла α_2 необходимо решить квадратное уравнение $\alpha_2^2(1 + \delta\Gamma - \Gamma) + \alpha_2\delta\Gamma^2 + \Gamma(1 - \Gamma) = 0$, к которому преобразуется условие Петцваля (3) при подстановке формул (2) и (5). Имеем

$$\alpha_{2} = \frac{\Gamma(2 - \delta\Gamma) \pm \sqrt{[\Gamma(\delta\Gamma - 2)]^{2} + 4\Gamma(\Gamma + 1)(1 - \Gamma - \delta\Gamma)}}{2(1 - \Gamma - \delta\Gamma)}.$$
(6)

Если последнее по ходу лучей зеркало расположено в фокальной плоскости первого зеркала ($-\delta = -f_1^{\prime}$), то выражение (6) приводится к виду

$$\alpha_2 = \frac{3\Gamma \pm \sqrt{\Gamma(5\Gamma + 4)}}{2(1 - \Gamma)} \,. \tag{7}$$

Для устранения аберраций третьего порядка (сферической аберрации, комы и астигматизма) в рассматриваемой оптической системе используем коэффициенты деформаций асферических зеркальных поверхностей σ_s, являющихся полноценными коррекционными параметрами. Использование остальных параметров может привести к конструктивно неосуществимой оптической схеме, дающей мнимое изображение или вообще не пропускающей свет на плоскость изображения. Воспользуемся формулами коэффициентов монохроматических аберраций третьего порядка B₀, K₀, C₀, D₀ [10, с. 138–140] и решим систему уравнений, описывающих исправление сферической аберрации, комы и астигматизма:

$$\begin{cases} B_0 = \frac{1}{2} \sum_{s=1}^{3} h_s Q_s = 0; \\ K_0 = -\frac{1}{2} \sum_{s=1}^{3} W_s + \frac{1}{2} \sum_{s=1}^{3} h_s S_s Q_s = 0; \quad (8) \\ C_0 = \frac{1}{2} \sum_{s=1}^{3} \frac{v_{s+1} \alpha_{s+1} - v_s \alpha_s}{h_s} - \frac{1}{2} \sum_{s=1}^{3} S_s W_s + \frac{1}{2} \sum_{s=1}^{3} h_s S_s^2 Q_s = 0. \end{cases}$$

Исправление кривизны изображения D_0 обеспечивается выполнением условия Петцваля (3) и устранением астигматизма ($C_0 = 0$). Вспомогательные величины, входящие в (8), определяются формулами:

$$v_{s} = \frac{1}{n_{s}}; \quad h_{s+1} = h_{s} - \alpha_{s+1}d_{s};$$

$$r_{s} = h_{s} \frac{v_{s} - v_{s+1}}{v_{s}\alpha_{s+1} - v_{s+1}\alpha_{s}};$$

$$S_{s} = \sum_{s=1}^{m-1} \frac{v_{s}d_{s-1}}{h_{s}h_{s-1}}; \quad S_{1} = 0; \quad Q_{s} = T_{s}\sigma_{s} + P_{s}; \quad (9)$$

$$T_{s} = \frac{(v_{s}\alpha_{s+1} - v_{s+1}\alpha_{s})^{3}}{v_{s}v_{s+1}(v_{s+1} - v_{s})^{2}};$$

$$P_{s} = \left(\frac{\alpha_{s+1} - \alpha_{s}}{v_{s+1} - v_{s}}\right)^{2} (v_{s+1}\alpha_{s+1} - v_{s}\alpha_{s});$$

$$W_{s} = \frac{\alpha_{s+1} - \alpha_{s}}{v_{s+1} - v_{s}} (v_{s+1}\alpha_{s+1} - v_{s}\alpha_{s}).$$

Используя условия нормировки (1) в формулах (9), получим выражения, сведенные в табл. 1. Первое и третье параболические зеркала афокальной системы характеризуются коэффициентами деформаций $\sigma_1 = \sigma_3 = -1,0.$

Таблица 1

Значения вспомогательных величин								
Номер поверхности	T_s	P_s	Ws	Ss	Vs			
1	$-\frac{\alpha_2^3}{4}$	$-\frac{\alpha_2^3}{4}$	$\frac{\alpha_2^2}{2}$	0	1			
2	$-\frac{\alpha_2^3}{4}$	$\frac{(1+\alpha_2)^2}{4} \times \\ \times (\alpha_2 - 1)$	$\frac{1-\alpha_2^2}{2}$	$-\frac{d_1}{1-\alpha_2 d_1}$	-1			
3	$\frac{1}{4}$	$\frac{1}{4}$	$-\frac{1}{2}$	$-\frac{d_{1}}{1-\alpha_{2}d_{1}}+\\+\frac{d_{2}}{(1-\alpha_{2}d_{1})(1-\alpha_{2}d_{1}+d_{2})}$	1			

Из решения системы уравнений (8) определяется коэффициент деформации эллиптического зеркала, который равен и противоположен по знаку квадрату эксцентриситета меридиональной кривой второго порядка:

$$e_2^2 = -\sigma_2 = \left(\frac{\alpha_2 + 1}{\alpha_2 - 1}\right)^2.$$
 (10)

По формулам (2) получены конструктивные данные (табл. 2) нескольких вариантов теле-

скопических систем модификации $-\delta = -f_1'$, рассчитанных для следующих оптических характеристик: видимых увеличений $\Gamma = -4^{\times}$; -6^{\times} ; -8^{\times} , углов поля зрения $2\omega = 1^{\circ}$; 2° при $\varepsilon = 0,5; 0,3; 0,223$ и $D: f'_{1,2} = 1:2$. Системы обладают хорошей коррекцией аберраций, их аберрационные характеристики представлены в табл. 3, где $\Delta D'$, $\Delta \sigma'$ – продольная и поперечная угловые сферические аберрации; η – величина неизопланатизма; Δ' – дисторсия; $L_m - L_S$ – величина астигматической разности; Δσ'ω – угловой размер максимальной фигуры рассеяния по полю зрения. Коррекция аберраций оценивалась с помощью пакета прикладных программ OPAL. Все рассчитанные оптические системы обладают компактными схемами, причем с возрастанием значения видимого увеличения Г их осевая длина уменьшается. К примеру, при диаметре входного зрачка D = 500 мм габаритные размеры будут значительно меньше фокусного расстояния объектива Грегори, а именно:

$$-\Gamma = -4^{\times}; I = 0,75 f'_{1,2};$$
$$-\Gamma = -6^{\times}; I = 0,6 f'_{1,2};$$
$$-\Gamma = -8^{\times}; I = 0,54 f'_{1,2}.$$

Таблица 2 Конструктивные параметры систем

Г	£	Номер	Уравнение	Осевое
		поверх-	поверхности	расстояние,
		ности		ММ
-4×	0,5	1	$y^2 + z^2 + 2000x = 0$	$d_1 = -750$
		2	$y^2 + z^2 - 666,667x +$	$d_2 = 250$
			$+0,889x^2 = 0$	
		3	$y^2 + z^2 - 1000x = 0$	-
-6 [×]	0,3	1	$y^2 + z^2 + 1836,668x = 0$	$d_1 = -600,667$
		2	$y^2 + z^2 - 387,892x +$	<i>d</i> ₂ = 141,5
			$+0,863x^2=0$	
		3	$y^2 + z^2 - 666,667 x = 0$	-
-8^{\times}	0,223	1	$y^2 + z^2 + 1757 - 359x = 0$	$d_1 = -537,3$
		2	_	$d_2 = 97,95$
		3	$y^2 + z^2 - 500x = 0$	_

Вестник БНТУ, № 1, 2007

Таблица 3

Аберрационные характеристики

Г	2ω	ΔD ', дптр	$\Delta \sigma'$	η, %	$L_m - L_S,$ дптр	Δ', %	$\Delta\sigma'_\omega$
-4^{\times}	1°	0,00017	2,16"	0,0017	0	0,0438	31,1"
-4^{\times}	2°	0,00017	2,16"	0,0017	0,0001	0,1756	2' 10"
-6^{\times}	1°	0,00093	7,95"	0,0056	0	0,1051	1' 15"
-8^{\times}	1°	0,0009	5,8"	0,0039	0,0001	0,1918	2' 36"

вывод

Рассчитанные системы обладают хорошим качеством изображения с учетом аберраций высшего порядка и просты в технологическом отношении. Они могут применяться в качестве афокальных насадок к линзовым регистрирующим объективам, работающим в различных областях спектра. К тому же они могут найти применение в оптических системах с синтезированной апертурой, а при разъюстировке исследованных афокальных систем можно получить длиннофокусные объективы с высоким качеством изображения.

ЛИТЕРАТУРА

1. **Smith, W. J.** Modern Optical Engineering / W. J. Smith // The Design of Optical Systems; 3rd Ed. 2000, McGraw-Hill. – New York, 2000.

2. Mikhel'son, N. N. Three-mirror telescope an astigmats / N. N. Mikhel'son // Optica Acta. – 1982. – Vol. 29, No 7. – P. 979–983. 3. Смирнов, В. Д. Астрономическая оптика в космических телевизионных системах / В. Д. Смирнов, М. А. Кувшинов, М. И. Скоморохов // Труды оптического общества имени Д. С. Рождественского: V междунар. конф. «Оптика», Санкт-Петербург, 20–23 окт. 2003 г. – СПб., 2003. – С. 160–161.

4. **Рябова, Н. В.** Концепция двухступенчатой оптики для крупных телескопов / Н. В. Рябова // Оптический журнал. – 1995. – № 10. – С. 21–23.

5. Оптические схемы объективов космических телескопов / А. И. Лысенко [и др.] // Оптический журнал. – 2002. – № 9. – С. 21–24.

6. Артюхина, Н. К. Композиция зеркальной анастигматической афокальной системы / Н. К. Артюхина, Н. В. Корсак // Вестник БНТУ. – 2006. – № 1. – С. 41–44.

7. Цуканова, Г. И. Исследование конструктивных особенностей трехзеркального объектива с промежуточным изображением / Г. И. Цуканова, В. Д. Стариченкова // Оптический журнал. – 1997. – № 7. – С. 21–23.

8. Артюхина, Н. К. Четырехзеркальные планобъективы с промежуточным изображением / Н. К. Артюхина // Вестник БНТУ. – 2005. – № 4. – С. 46–49.

9. **Прислопский, С. Я.** Трехзеркальная анаберрационная телескопическая система / С. Я. Прислопский, Н. К. Артюхина // Материалы 61-й науч.-техн. конф. преподавателей, науч. работников, аспирантов, магистрантов и студентов приборостроительных специальностей, Минск, 5–30 апреля 2005 г. – Минск, 2005. – С. 23–25.

10. **Чуриловский, В. Н.** Теория хроматизма и аберраций третьего порядка. – Л.: Машиностроение, 1968. – 312 с.

Поступила 10.04.2006