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USAGE OF THE ANHARMONIC CORRELATED EINSTEIN MODEL
TO DEFINE THE EXPRESSIONS OF CUMULANTS
AND THERMODYNAMIC PARAMETERS IN THE CUBIC CRYSTALS
WITH NEW STRUCTURE FACTORS
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By using potential effective interaction in the anharmonic correlated Einstein model on the basis of quantum statistical
theory with phonon interaction procedure, the expressions describing asymmetric component (cumulants) and thermodynamic
parameters including the anharmonic effects contributions and by new structural parameters of cubic crystals has been formu-
lated. This new parameters describing the distribution of atoms. The expansion of cumulants and thermodynamic parameters

through new structural parameters has been performed.
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Hcnonp3yst nmoteHIansHo 3()(HEeKTUBHOE B3aMMOJCHCTBIE B aHTapMOHMYECKOH KOPPEISIIMOHHOI Mojenn DiHmTeHHa
Ha OCHOBAaHMM KBaHTOBOW CTATHCTHYECKOIl TEOpHH C (POHOHHBIM B3aUMOJCHCTBHEM, OBUIM CHOPMYIHPOBAHBI BHIPAKCHUS,
OIUCHIBAIONINE aCHMMETPUYHBIC KOMIIOHEHTH! (KyMYJISIHTBI) M TEPMOJMHAMIYECKUE MTapaMeTphl, BKIIOYAsi BKJIAJ aHTapMo-
HUUYECKUX 3(P(EKTOB M HOBBIX CTPYKTYPHBIX HapaMeTpoB KyOHMUECKMX KpHUCTAILUIOB. IIpearaemble HOBBIC IapaMeTphI
OIUCBIBAIOT paclpesieieHne aToMOB. B paboTe ocymecTBIsIIOCH paclIMpeHHe KyMYISHTOB M TEPMOJIMHAMUYECKHX MapaMeT-

POB, UCIIOJIB3Yys HOBBIE CTPYKTYpHbIE TapaMeTphl.

KnroueBble c1oBa: aHrapMOHHUECKast TOHKas CTPYKTypa PEHTT€HOBCKOTO MOTJIOIIEHUS, KyMYJISTHTBI, TEPMOJANHAMUYE-

CKHE IapaMeTpBl.
Wn. 1. Tabn. 3. bubmmorp.: 4 Hass.

Introduction. In the harmonic approximation
X-ray Absorption Fine Structure spectra (XAFS),
the theoretical calculations are generally well ap-
propriate with the experimental results at low tem-
peratures, because the anharmonic contributions
from atomic thermal vibrations can be neglected.
However, at the different high temperatures, the
XAFS spectra provide apparently diffirent struc-
tural information due to the anharmonic effects and
these effects need to be evaluated. Furthermore,
the XAFS spectra at low temperatures may not
provide a correct picture of crystal structure, there-
fore, this study of the XAFS spectra including the
anharmonic effects at high temperatures is to be
needed. The expression of anharmonic XAFS
spectra often is described by [1]
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where F(k) — is the real specific atomic backs-
cattering amplitude; @®(k) - is total phase shift
of photoelectron; k — is wave number; A — is
mean free path of the photoelectron, and o (n =
=1, 2, 3, ...) — are the cumulants to describe
asymmetric components, they all appear due to the
thermal average of the function e®*", in which the
asymmetric terms are expanded in a Taylor series
around value R=<r> with r is instantaneous
bond length between absorbing and backscattering

atoms at T temprature and then are rewritten in
terms of cumulants.

At first, the cumulant expansion approach has
been used mainly fitting the XAFS spectra to ex-
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tract physical parameters from experimental va-
lues. Thereafter, some procedure were formulated
for the purpose of analytic calculation of cumu-
lants, and the anharmonic correlated Einstein mo-
del [2] which has been given results good agreement
with experimental values. The important develop-
ment in this procedure is that model has been cal-
culated into the interaction between absorbing and
backscattering atoms with neighboring atoms in a
cluster of nearest atoms at high temperatures.
The potential interaction between the atoms be-
comes asymmetric due to the anharmonic effects
and the asymmetric components were written in
terms of the cumulants. The first cumulant or net
thermal expansion, the second cumulant or Debye-
Waller factor, the third cumulant is description
phase shift of anharmonic XAFS spectra. The pur-
pose of this work is to formulate the cumulant
expressions and write thermodynamic parameters
as general form through the new structure parame-
ters by using the anharmonic correlated Einstein
model.

Formalism. Because the oscillations of a pair
single bond between of absorbing and backscatte-
ring atoms with masses M;, M,, respectively, is
affected by neighboring atoms, when taking into
account these effects via an anharmonic correlated
Einstein model, effective Einstein potential is
formed as follow:

Uc()=U()+..+ > DU [ﬁ%aj} 2)

i=1,2 j=i

where R — is the unit bond length vector, p - is

reduced mass of atomic mass M; and M,; the sum
according to i, j — is the contribution of cluster

nearest atoms; U (x) an effective potential:
1
U (x)zEkeﬁx2 +kX+..., x=r—r, (3)
where r — is spontantaneous bond length be-

tween absorbing and bacskcattering atoms rq is
its equilibrium value; k, - is effective spring

ture plus an anharmonic perturbation, with
y=x—-a, a(T)=(x), (y)=0, we have:

2

P
H=gp tUe0=H, +Ue (3) +3Ue (y);

P> 1
H =—4— 2, 4
= zkeﬁy 4

with a is the net thermal expansion, y — is the de-
viation from the equilibrium value of x at tempera-
ture T. Next, the use of potential interaction be-
tween each pair of atoms in the single bond can be
expressed by anharmonic Morse potential for cubic
crystals. Expanding to third oder around its mini-
mum, we have:

Ug (X)=D(e?** —2e ) ~
zD(—1+oc2X2—oc3X3+...), (5)

where a — is expansion thermal parameter; D — is
the dissociation energy by U (r,) =-D.

From expressions (4), (5) we have potential ef-
fective interaction Einstein generalize as:

UE(X):UE(61)+%keff y?+8Uc(y), x=y+a. (6)

Substituting Eq. (5) into (3) and using Eqg. (6)
to calculate the second term in Eg. (3) with
p=M/2 (M;=M,= M), sum of iis over absorber
(i=1) and backscatterer (i=2), and the sum of j

which is over all their near neighbors, excluding
the absorber and backscatterer themselves, because

they contribute in the U(x), and calculation of
(R,R;) with lattice cubic crystals like s.c, fcc and

bcc crystals, we obtain thermodynamic parameters
like kg, ky and oU_(y) in Tab. 1.

constant because it includes total contribution of
neighboring atoms; ks — is cubic anharmonicity
parameter which gives an asymmetry in the pair
distribution function.

The atomic vibration is calculated based on
guantum statistical procedure with approximate
quasi — harmonic vibration, in which the Hamil-

Table 1
The expressions of thermodynamic parameters
for cubic crystals
Factor s.c crystal fce crystal bcc crystal
ks -5D0’/4 ~5D0/4 ~5D0’/4
Ket | 3D’ (1-50:/4) | 5D (1-30ia/2) | 11D (1- 450a/22)/3

3Ue(Y)

Do (3ay - 5ay3/4) 5Da? (ay - ay3/4) Do’ (11ay/3 - 5ay3/4)

tonian of the system is written as harmonic term
with respect to the equilibrium at a given tempera-
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To compare the above expressions in Tab. 1,
we see although different structures of cubic crys-

Hayka
wTexHuka, Ne 6, 2014



Natural Sciences

tals and which have special common factors, we
call these factors as new structure factors ¢4, C,, the
parameters calculated statistically is in Tab. 2.

Table 2
New structural parameters of cubic crystals
Structure Cy C
s.C 3 1
fcc 5 6/5
bce 11/3 18/11

The ks parameter is indentical with any struc-
tures, the expressions of k,, dU.(y) thermody-

namic parameters for the structural cubic crystals
generalize according to new structural parameters
are the following forms:

ket =G (Do +cyaky) = pos;
3Ug (y) = Da? [clay - 5ay3/4]. (7

To derive the analytical formulas for cumulants
through new structural parameters for the crystals
of cubic structure, we use perturbation theory [3].
The atomic vibration is quantized as phonon and
anharmonicity is the result of phonon interaction.
Accordingly, we express y in terms of annihilation

and creation operators a“, a, respectively:

y=c’(a+a’); o°=n/2mo.; a'a=n, (8)
and use the harmonic oscillator states |n> as

eigenstates with eigenvalues E, =nfiog, ignoring

the zero-point energy for convenience. The a*, a
operators satisfying the following properties

a*(n|=\/n+1|n+1>;

a(n| =\/ﬁ|n—1>. The cumulants are calculated by

[a, a*] =aa' —a‘a=1

the average value <y”‘> =%Tr(py'”), m=123, ...

p=exp(-BH); B=(ksT)™, where Z is the canon-
tical partition function, p with 3 is the statistical
density matrix, k; is Boltzmann’s constant. The
corresponding  unperturbed  quantities  are
Z, =Tr(p,), and p, =exp(—pH,). To leading or-
der in perturbation dU., p=p,+08p with dp is
given by:

Op=—-HpdB; 0p, =—H,p,oP ©))
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we obtained:
B ~
8p=~-[e™5U, (B)dp’
0

8U; (B)=€"M8U e,

If we put unperturbed quantities equal to zero,
we have:

"=

Nt

1
ZO =Trp0 = Zexp (—thCOE) = E,
n

1l
o

n

where z=eP" =%/ js the temperature varia-

ble and determined by the 6. =g /Ky is Einstein
temperature. Now we are using above expressions

to calculate analytics of the cumulants.
« The cumulants even order:

)

1 1
~=Trpy" = —Trp,y" =
7 py Z, PoY

mchSn
:Zize-“ﬁ’“% (n|y"|n).
0 n

With m=2 we have calculation expression of
the second cumulant

<y2> ) :Zize—”ﬁhws <n| y2|n>' (10)
0 n

Using matrix (n|y?|n)=(n|a’a+aa*|n) =

= (00)2 (2n+1) and substituting into (10) and ap-

plying the mathematical transformations and ac-
cording to (7) we have expression of second cu-
mulant which is rewritten through c; structural
parameter:

(2

2\ hog (1+Z)
<y >_ 26,00’ (1-2) ()

e The cumulants odd order:

m 1 m 1 m
e ~— . 12
A L R

With m=1,3 we have expression to calculate
first cumulant and third cumulant. Transformation

following matrix correlative with (y) and <y3>,

we have:
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(nly|n+1)=c,(nja+a"|n+1)=
=cyn+1{n|n)=c, (n +1'7; (13)

(n|y*|n+1) = (o, )’ (3m/ﬁ+3JnT—l)<n|n> =

3/2 .

=3(c,)’ (n+1)"; (14)

(n]y*|n+3)=3(c,’[(N+1)(n+2)(n+3)] *. (15)

« The first cumulant (m = 1)
1 e—[}nhmE _ e—[}n'ho)E
o = (y} _ _z : %
Zy oy Nhog —Nn'hog

x(n| D[azclay—asqy3]|n'><n‘| y|n)

with n"=n+1 and from Eq. (12), (13) and trans-
form, we have:

)= -2% (o, {cla “sa(oyt & Z)} _

hog 1-2)

_ Do fioxe [qa_gm (o) 1+ z)},

 hog 2k (1-2)

because (y)=0 and approximate k ~¢Da?, the

transformation and reduction we obtained first cu-
mulant

G(l) —a= 15:1(DE (1+ Z) _ 150 6(2). (16)
8c;Da (1-2) 4cq
e The third cumulant (m = 3)
()
1 e’BEn _efﬁEﬂ’ , ,
=Z—Z?<”|5U5|”><” 1y*[n). (17)
0 nn’' n n’

From Eq. (7), (17), we have:
D(Xz efﬁnhwg _ efﬁn'hmE

3
<y> Z, o Nhog —n'hog
[{plaayl)~(alosy? )] ). (28

Using Eq. (14), (15), the calculation of Eq. (18)
with n"=n+1, n'=n+3, respectively, and note
that matrix only affect with y* and according to
Eq. (7), (8), we determine third cumulant:
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o _15(ho ¥ (1+10z + z2)

2
_ 15h0, (1+1OZ+Z )0(2).
42D 1-7°

(19)

The results of the numerical calculations ac-
cording to present method for cumulants good
agreement with experimental values for Cu crystal
(Tab. 3). The Fig. 1 illustrates good agreement of
the second and third cumulants in present theory
with experiment values.

Table 3
The comparison of the results of 6® and ¢ calculated
by present theory with experimental data for Cu crystal
at different temperatures

@) (a2 @ (a3

_— o (A%) o (AY)
Present Expt. Present Expt.
10 0,00298 0,00292 - -
77 0,00333 0,00325 | 0,000100 -

295 0,01858 0,01823 | 0,000131 | 0,000130

683 0,01858 | 0,01823 - -

a
0,020

0,018- __Present theary, Cu +
0 016 +Expt. , Cu (Ref. B)
, L

o Different theory [ Ref. 4,2)

0,014
0,012
0,010
0,008
0,006/
0,004
0,002C

0
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Fig. 1. The graphs illustrate temperature dependence
of second (a) and third (b) cumulants by present theory
and compared to experiment values
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Discussion and conclusions. Developing fur-
ther the anharmonic correlated Einstein model we
obtained a general theory for calculation cumulants
and thermodynamic parameters in XAFS theory
including anharmonic contributions. The expres-
sions are described through new structural parame-
ters agree with structural contributions of cubic
crystals like face center cubic (fcc), body center
cubic (bce), and results published before [4]. The
expression in this work is general case of present
procedure when we insert the magnitudes of ¢y, ¢,
from Tab. 2 into the calculation of the thermody-
namic parameters and above obtained expressions
of cumulants. The results of the numerical calcula-
tions according to present method for cumulants
good agreement with experimental values for Cu
crystal (Tab. 3) and illustrates by graphs in Fig. 1,
note that the experimental values from XAFS spec-
tra measured at HASYLAB (DESY, Germany).

With the discovery of the XAFS spectra,
it provides the number of atoms and the radius of
each shell, the XAFS spectroscopy becomes a
powerful structural analysis technique, but the
problem remained to be solved is the distribution
of these atoms. The factors c;, c,, introduced in
the presented work contains the angle between the
bond connecting absorber with each atom and
the bond between absorber and backscatterer, that
is why they can describe the nearest atoms distri-
butions surround absorber and backscatterer atoms.

VJIK 004.9.005.53

Knowing structure of the crystals and the magni-
tudes of ¢4, c,, from Tab. 2 we can calculate the
cumulants and then XAFS spectra. But for struc-
ture unknown substances we can extract the atomic
number from the measured XAFS spectra, as well
as, extract the factors c,, ¢,, according to our theo-
ry from the measured cumulants like Debye-Waller
factor to get information about atomic distribution
or structure.

The thermodynamic parameters expressions
described by second cumulant or Debye-Waller
factor is very convenient, when second cumulant

o® is determined, it allows to predict the other
cumulants according to Eg. (21), (24), consequent-
ly reducing the numerical calculations and experi-
mental measurements.
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IlocTpoeHbl aHANMTUYECKUE BBIPAXKEHUS, OIKCBHIBAIOIIUE 3aBUCUMOCTb MEXIY OCHOBHBIMU IIapaMeTpaMH Ipolecca
IpOOJICHNsT KaTMHHBIX pyl. YUHUTHIBas 0OMmMHOCTE (opmyinsl KupnudeBa, Obin BHECEHBI HEKOTOPBIE KOPPEKTHUBEI JUISl HETIO-
CPEACTBECHHOTO MPUMEHEHNUS JTaHHOW THIOTE3bl B pacyeTe 3HEPruM, WAYIIEH Ha pa3pylieHne oopasia KaTuiHOW pyasl, 4YTO
M03BOJIsIET OpaTh BO BHUMAHHE HE TOJIBKO OOIIHMH, YyCpETHEHHBIN pa3Mep 00pa3lioB, HO U MPOIEHTHOE CO/epKaHHe KaXKI0To
KOHKPETHOTO 00pasiia 3aJaHHbIX pa3MepoB. B pe3ynbraTe ncciaenoBaHus cocTaBa KalWHON pyabl 3aJaHHOTO 00BbeMa ObIIO
YCTaHOBJIEHO, YTO Ka)KIbI KOMIIOHEHT, BXOASIINH B cOCTaB 00paslia, UMEeT CBOM MpeJeNl MPOYHOCTH U MOIYJb YIPYTOCTH.
Kpome Toro, mponeHTHOE collepikaHne KOMIIOHEHT, BXOISIINX B COCTaB KaJIMHHOHN py/b! (CHIIBBUHATA, TAINTa U HEPACTBO-

PHMOTO 0CaJIKa), Pa3IHIHO.
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