ПРОВОДЯЩИЙ КАНАЛ ДЛЯ ТРАНСМИССИИ ЭНЕРГИИ

Полный текст:


Аннотация

Лазерный разряд, полученный при помощи конической оптики, является наиболее подходящим для образования проводящих каналов в атмосфере. Чаще всего рассматриваются только два типа лазеров для формирования высокопроводящих  каналов в атмосфере,  управляемых  лазерным разрядом: импульсные субмикросекундные  газовохимический лазеры (CO2, DF) и короткоимпульсные твердотельные ультрафиолетовые лазеры.

Основное преимущество короткоимпульсного лазера заключается в его способности формировать сверхдлинные ионизированные каналы с  характерным диаметром ~100 мкм в атмосфере по направлению распространения луча. При расчётной плотности электронов ниже 10 ⋅ 16 см3 в этих нитях при длине волны лазера в диапазоне 0,5–1,0 мм плазма слабо абсорбирует лазерное излучение. В данном случае длина пути, образуемого многими нитями и определяемая интенсивностью лазерного излучения, может исчисляться многими километрами при энергии фемтосекундного импульса, равной ~100 мДж. Однако такие лазеры не могут применяться для создания высокопроводимых длинных каналов в атмосфере. Активное сопротивление данного типа проводящих каналов оказывается очень высоким, и невозможно добиться сильного нагревания газа в этих каналах (<1 Дж). Электрический пробой, управляемый излучением фемтосекундного твердотельного лазера, обеспечивается  только при длине 3 м и напряжении 2 MВ в искровом промежутке (670 кВ/м).

Недавно научная группа из института имени П. Н. Лебедева улучшила этот результат. При этом искровой промежуток 1 м был пробит лазерным излучением KrF посредством переключения высоковольтного (до 390 кВ/м) энергетического разряда УФ импульсами длительностью 100 наносекунд. Наш предыдущий результат – это проводящий канал длиной в 16 м, контролируемый лазерным разрядом при напряжении 3 MВ, был получен более 20 лет тому назад в России и в Японии с использованием импульсного CO2-лазера с энергией, равной 0,5 кДж. Средняя напряженность электрического поля составляла < 190 кВ/м. Таким образом, предстоит еще много сделать, чтобы добиться эффективного применения.


Об авторе

В. В. Аполлонов
Институт общей физики имени Прохорова А. М.
Россия

Доктор физико-математических наук, профессор



Список литературы

1. Apollonov, V. V., Baitsur, G. G., Ermachenko, A. V., Firsov, K. N., Konev, V. M., Kononov, I. G., Koval’chuk, O. B., Kralin, V. V., Minenkov, V. R., Prokhorov, A. M., Semenov, S. K., Shubin, B. G., & Yamshchikov, V. A. (1991) High-Power Molecular Lasers Pumped by a Volume Self-Sustained Discharge. Optical Society of America. B, 8 (2), 220–229. doi: 10.1364/JOSAB.8.000220.

2. Alexandrov, G. N., Ivanov, V. L., Kadzov, G. D., Parfenov, V. A., Pakhomov, L. N., Petrun'kin, V. Iu., Podlevskii, V. A., & Seleznev, Iu. G. (1980) On the Possibility of Increasing the Efficiency of the Protective Action of Lightning by Means of a Laser Spark. Elektrichestvo (Electricity), 2, 47–48 (in Russian).

3. Kinoshita, F., Morooka, Y., Uchiumi, M., Tanaka, T., Chang, Y.-M., Muraoka, K., Tsuji, T., Honda, C., Miki, M., & Wada, A. (1997) Laser-Triggered Lightning Under Optimized Laser Beam Conditions. Proc. XII Intern. Conf. on Gas Discharge and their Applications. Greifswald, Germany, 475–479.

4. Diels, J.-C., & Rudolph, W. (2006) Ultrashort Laser Pulse Phenomena: Fundamentals, Techniques, and Applications on Femtosecond Time Scale. Burlington: Acad. Press.

5. Kasparian, J., Rodriquez, M., M'ejean, G., Yu, J., Salmon, E., Wille, H., Bourayou, R., Frey, S., André, A., Mysyrowicz, Y.-B., Sauerbrey, R., Wolf, J.-P., & Wöste, L. (2003) White-Light Filaments for Atmospheric Analysis. Science, 301 (5639), 61–64. doi: 10.1126/science.1085020.

6. Berge, L., Skupin, S., Nuter, R., Kasparian, J., & Wolf, J.-P. (2007) Ultrashort Filaments of Light in Weakly Ionized, Optically Transparent Media. Reports on Progress in Physics, 70, 1633. doi:10.1088/0034-4885/70/10/R03.

7. Zvorykin, V. D., Levchenko, A. O., & Ustinovskii, N. N. (2011) Control of Extended High-Voltage Electric Discharges in Atmospheric Air by UV KrF-Laser Radiation. Kvantovaya Elektronika [Quantum Elektronika], 41, 227–233. doi: 10. 1070/QE2011v041n03ABEH014477 (in Russian).

8. Apollonov, V. V., Vasilyak, L. M., Kazantsev, S. Yu., Kononov, I. G., Poliakov, D. N., Saifulin, A V., & Firsov, K. N. (2002) The Direction of the Electric Discharge Continuous Laser Spark by Focusing Radiation CO2-Conical Mirror. Kvantovaya Elektronika [Quantum Elektronika], 32 (2), 115–120 doi:10.1070/qe2002v032n02abeh002140 (in Russian).

9. Bazelyan, E. M., & Raizer, Yu. P. (2001) Physics of Lightning and Lightning Protection. Moscow: Fizmatlit. 320 p. (in Russian).

10. Apollonov, V. V. (2005) Feasibility Study of a CO2-Laser Based Lightning-Protection System Realization. Optical Engineering, 44 (1), 014302. doi:10.1117/1.1829096.

11. Pyatnitskii, L. N., & Korobkin, V. V. (2000) Wave Beams with Compensated Diffraction and Extended Plasma Channels Based on Them. Trudy Instituta Obshchei Fiziki (Proceedings of the Institute of General Physics), 57, 59–112 (in Russian).

12. Publications of the Teramobile Project. Available at: http://www.teramobile.org/publis.html. (accessed 22.10.2013).

13. Bazelyan, E. M., & Raizer, Yu. P. (1997) Spark Discharge. Moscow: Publisher Moscow Institute of Physics and Technology. 320 p. (in Russian).

14. Aleksandrov, G. N. (1967) On the Mechanism of Spark Discharge with a Negatively Charged Tip. Lightning. Zhurnal Tekhnicheskoi Fiziki (Journal of Technical Physics), 37 (2), 288–293 (in Russian).

15. Raizer, Yu. P. (1974) Laser Spark and Propagation of Discharges. Moscow: Nauka. 240 p. (in Russian).

16. Fortov, V. E. (2000) Encyclopedia of Low Temperature Plasma. Book 2, Introductory Volume. Moscow, Nauka: Interperiodicals. 634 p. (in Russian).

17. Apollonov, V. V., Kiiko, V. V., Kislov, V. I., Suzdal’tsev, A. G., & Egorov, A. B. (2003) High-Frequency Repetitively Pulsed Operating Regime in High-Power Wide-Aperture Lasers. Kvantovaya Elektronika [Quantum Elektronika], 33 (9), 753–757. doi:10.1070/qe2003v033n09abeh002496 (in Russian).

18. Grachev, G. N., Ponomarenko, A. G., Smirnov, A. L., Statsenko, P. A., Tishchenko, V. N., & Trashkeev, S. I. (2005) A Pulsating Optical Discharge Moving in a Gas. Kvantovaya Elektronika [Quantum Elektronika], 35 (11), 973–975. doi:10.1070/qe2005v035n11abeh013026 (in Russian).

19. Apollonov, V. V. (2009) Super Long Conductive Canal for Energy Delivery. Proc. X Intern. Conf. on Photonics and Optoelectronics. Wuhan, China, 13.

20. Apollonov, V. V., Apollonova, Z. P., Vagin, Iu. S., & Vagina, T. G. (2009) Sposob Sozdaniya Tokoprovodyashchikh Kanalov v Neprovodyashchei Srede (Method for the Formation of Conducting Channels in a Nonconducting Medium). Patent of the Russian Federation no. 2400005 (in Russian).

21. Fuks, N. A. (1955) Mechanics of Aerosols. Moscow: Publisher Academy of Sciences of the USSR. 353 p. (in Russian).

22. Ageev, V. P., Barchukov, A. I., Bunkin, F. V., Konov, V. I., Silenok, A. S., & Chapliev, N. I. (1977) Investigation of the Mechanical Effect of CO2 Laser Radiation Pulses on Solid Targets in Gaseous Media. Sov. J. Quantum Electron., 7 (2), 171–176; Ageev, V. P., Barchukov, A. I., Bunkin, F. V., Konov, V. I., Prokhorov, A. M., Silenok, A. S.,& Chapliev, N. I. (1977) Laser Air-Breathing Jet Engine. Sov. J. Quantum Electron, 7 (12), 1430–1437.

23. Metal Nanopowders. Available at: http://www. nanosized-powders.com. (accessed 22.10.2013).

24. Rukhadze, A. A., & Shpigel’, N. S. (1965) Elektricheskii Vzryv Provodnikov (Electric Explosion of Conductors). Moscow, Mir. 341 p. (in Russian).

25. Gerasimenko, N. I., Grashina, N. A., Medvedkov, A. G., Meshcheryakov, A. B., & Pletnev, N. V. (1988) Color SuperSpeed Photographing of Pulsed Electric Discharges. Pribory i Tekhnika Eksperimenta (Instruments and Experimental Techniques), 1, 212–215 (in Russian).

26. Goncharenko, G. M. (1963) Installation for Heating Gas by Pulse Currents. Trudy MEI. Elektroenergetika (Proceedings of MEI. Electric Power Engineering), 45, 7–169 (in Russian).

27. Gavrilov, V. N., & Litvinov, E. A. (1993) Particle Production by Electrical Explosion of a Conductor. Journal of Applied Mechanics and Technical Physics, 34 (6), 768–774.

28. Kvartskhava, I. F., Plyutto, A. A., Chernov, A. A., & Bondarenko, V. V. (1956) Electrical Explosion of Metal Wires. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (Journal of Experimental and Theoretical Physics), 30 (1), 42–53 (in Russian).

29. Martynyuk, M. M. (1974) Role of Liquid Metal Evaporation and Boiling in the Process of Electric Explosion of Conductor. Zhurnal Tekhnicheskoi Fiziki (Journal of Technical Physics), 44 (6), 1262–1270 (in Russian).

30. Peregud, B. P., & Abramova, K. B. (1964) Experimental Investigation of the Electrical Explosion. Doklady Akademii Nauk SSSR (Reports of the USSR Academy of Sciences), 157 (4), 837–840 (in Russian); Abramova, K. B., Valitskii, V. P., Vandakurov, Yu. V., Zlatin, N. A., & Peregud, B.P. (1966) Magnetohydrodynamic Instabilities in Electrical Explosion. Doklady Akademii Nauk SSSR (Reports of the USSR Academy of Sciences), 167 (4), 778–781 (in Russian).

31. Protopopov, N. A., & Kul’gavchuk, V. M. (1961) On Mechanism Theory for Inition of Current Pause and Shock Waves in Metal Heating with the Help of Pulses of High Density Electric Current. Zhurnal Tekhnicheskoi Fiziki (Journal of Technical Physics), 31 (5), 557–564 (in Russian).

32. Vlasto's, A. E. (1967) Current Pause in Explodingwire Discharges. Journal of Applied Physics, 38 (13), 4993–4998. doi: 10.1063/1.1709266; Vlasto's, A. E. (1968). Restrike Mechanisms of Exploding Wire Discharges. Journal of Applied Physics, 39 (7), 3081–3087. doi: 10.1063/1.1656736.

33. Aleksandrov, A. F., Zosimov, V. V., Kurdyumov, S. P., Popov Yu. P., Rukhadze, A. A., & Timofeev, I. B. (1971) Dynamics and Radiation of Direct High Current Discharges in air. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki (Journal of Experimental and Theoretical Physics), 61 (5), 1841–1855 (in Russian).

34. Aleksandrov, A. F., & Rukhadze, A. A. (1976) Physics of High-Current Electric-Discharge Light Sources. Moscow, Atomizdat. 184 p. (in Russian).

35. Komel’kov, V. S. (1947) Channel Leader Discharge. Reports of the USSR Academy of Sciences [Dokl. Akad. Nauk SSSR], 58 (1), 57 (in Russian).

36. Apollonov, V. V., & Pletnev, N. V. Sposob Neodnorodnogo Vyvoda Energii Svobodnoi Generatsii Vysshikh Poperechnykh Tipov Kolebanii iz Lazera i Lazer (Method for the Inhomogeneous Extraction of the Energy of Free Higher Transverse Lasing Modes from a Laser and a Laser). Patent of the Russian Federation no. 2239921 (in Russian).

37. Sinton, R., Van Herel, R., Enright, W., & Bodger, P. (2011) Generating Extra Long Arcs Using Exploding Wires. Journal of Applied Physics, 110 (9), 093303. doi: 10.1063/1.3660386.


Дополнительные файлы

Для цитирования: Аполлонов В.В. ПРОВОДЯЩИЙ КАНАЛ ДЛЯ ТРАНСМИССИИ ЭНЕРГИИ. НАУКА и ТЕХНИКА. 2014;(6):3-16.

For citation: Apollonov V.V. CONDUCTIVE CHANNEL FOR ENERGY TRANSMISSION. Science & Technique. 2014;(6):3-16.

Просмотров: 175

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.

ISSN 2227-1031 (Print)
ISSN 2414-0392 (Online)